Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Variation in land-use intensity leads to higher biodiversity

If grassland is managed intensively, biodiversity typically declines. A new study led by Bernese plant ecologists shows that it is rare species that suffer the most. These negative effects could be reduced, if farmers varied the intensity of their land use between years.

Globally, the intensification of agricultural land use is considered the leading threat to biodiversity. Previous studies on the impacts of land-use intensity on biodiversity have only looked at single or small groups of organisms. However, individual species can vary greatly in how they respond to different land uses, meaning that the overall impact on biodiversity is often not clear.

Variation in land-use intensity between years – as here in the Schwäbische Alb – leads to higher biodiversity.

Photo: Ilka Mai, Botanischer Garten der Universität Potsdam

A research study, published in the Proceedings of the National Academy of Science (PNAS), led by the Professors Eric Allan and Markus Fischer at the University of Bern, shows that farmers can help protect grassland biodiversity by varying management intensity over time. This reduces some of the negative effects of intensive land use, particularly for rare species.

New index measures ecosystem biodiversity

A team of 58 scientists, from both Switzerland and Germany, assembled a uniquely comprehensive dataset on the biodiversity of up to 49 groups of organisms, including groups of bacteria, fungi, plants and animals. They used data from study sites that they had established in 150 grasslands in three regions of Germany, the Biodiversity Exploratories, which varied from extensively managed and lightly grazed to intensively grazed or mown grasslands with high fertilizer input.

The scientists used these data to compile a novel index of «multidiversity», which measures total ecosystem biodiversity. «The study showed that overall biodiversity declined very strongly with increasing land-use intensity and that this was particularly true for rarer species», explains Eric Allan of the Institute of Plant Sciences at the University of Bern. Plants, grasshoppers and butterflies declined most strongly.

According to Eric Allan, the results provide very strong evidence for the importance of extensively managed grasslands for nature conservation: «This new index provides a single measure of biodiversity for an ecosystem and should make it easier to assess the effects of conservation measures or restoration efforts on biodiversity.»

Variation in land-use intensity as new strategy

Interestingly, the scientists also found biodiversity to be much higher in grasslands in which land-use intensity had varied over the last few years. «This suggests that varying management intensity over time could be a novel strategy to maintain biodiversity in grasslands, for instance by altering the number of livestock or the frequency of mowing between years», explains Markus Fischer.

The rare species in the study benefited particularly from changing land use over time: At intermediate land-use intensity, the biodiversity of the rarer species was almost twice as high when land-use intensity varied between years. «This result shows that farmers could do a lot for biodiversity conservation simply by varying the intensity of their land-use between years, as long as the mean intensity of management does not get too high», says Eric Allan.

Publication details:
Allan E, Bossdorf O, Dormann CF, Prati D, Gossner M, Blüthgen N, Barto K, Bellach M, Birkhofer K, Boch S, Böhm S, Börschig C, Chatzinotas A, Christ S, Daniel R, Diekoetter T, Fischer C, Friedl T, Glaser K, Hallman C, Hodaĉ L, Hölzel N, Jung K, Klein AM, Klaus V, Kleinebecker T, Krauss J, Lange M, Müller J, Nacke H, Pašaliæ E, Rillig M, Rothenwöhrer C, Schall P, Scherber C, Schulze W, Socher S, Steckel J, Steffan-Dewenter I, Türke M, Tscharntke T, Weiner C, Werner M, Westphal C, Wolters V, Wubet T, Gockel S, Gorke M, Hemp A, Renner SC, Schöning I, Pfeiffer S, König-Ries B, Buscot F, Linsenmair KE, Schulze ED, Weisser WW, Fischer M: Interannual variation in land-use intensity enhances grassland multidiversity, PNAS, in press, doi: 10.1073/pnas.1312213111.

Nathalie Matter | Universität Bern
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>