Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Variation in land-use intensity leads to higher biodiversity

27.12.2013
If grassland is managed intensively, biodiversity typically declines. A new study led by Bernese plant ecologists shows that it is rare species that suffer the most. These negative effects could be reduced, if farmers varied the intensity of their land use between years.

Globally, the intensification of agricultural land use is considered the leading threat to biodiversity. Previous studies on the impacts of land-use intensity on biodiversity have only looked at single or small groups of organisms. However, individual species can vary greatly in how they respond to different land uses, meaning that the overall impact on biodiversity is often not clear.


Variation in land-use intensity between years – as here in the Schwäbische Alb – leads to higher biodiversity.

Photo: Ilka Mai, Botanischer Garten der Universität Potsdam

A research study, published in the Proceedings of the National Academy of Science (PNAS), led by the Professors Eric Allan and Markus Fischer at the University of Bern, shows that farmers can help protect grassland biodiversity by varying management intensity over time. This reduces some of the negative effects of intensive land use, particularly for rare species.

New index measures ecosystem biodiversity

A team of 58 scientists, from both Switzerland and Germany, assembled a uniquely comprehensive dataset on the biodiversity of up to 49 groups of organisms, including groups of bacteria, fungi, plants and animals. They used data from study sites that they had established in 150 grasslands in three regions of Germany, the Biodiversity Exploratories, which varied from extensively managed and lightly grazed to intensively grazed or mown grasslands with high fertilizer input.

The scientists used these data to compile a novel index of «multidiversity», which measures total ecosystem biodiversity. «The study showed that overall biodiversity declined very strongly with increasing land-use intensity and that this was particularly true for rarer species», explains Eric Allan of the Institute of Plant Sciences at the University of Bern. Plants, grasshoppers and butterflies declined most strongly.

According to Eric Allan, the results provide very strong evidence for the importance of extensively managed grasslands for nature conservation: «This new index provides a single measure of biodiversity for an ecosystem and should make it easier to assess the effects of conservation measures or restoration efforts on biodiversity.»

Variation in land-use intensity as new strategy

Interestingly, the scientists also found biodiversity to be much higher in grasslands in which land-use intensity had varied over the last few years. «This suggests that varying management intensity over time could be a novel strategy to maintain biodiversity in grasslands, for instance by altering the number of livestock or the frequency of mowing between years», explains Markus Fischer.

The rare species in the study benefited particularly from changing land use over time: At intermediate land-use intensity, the biodiversity of the rarer species was almost twice as high when land-use intensity varied between years. «This result shows that farmers could do a lot for biodiversity conservation simply by varying the intensity of their land-use between years, as long as the mean intensity of management does not get too high», says Eric Allan.

Publication details:
Allan E, Bossdorf O, Dormann CF, Prati D, Gossner M, Blüthgen N, Barto K, Bellach M, Birkhofer K, Boch S, Böhm S, Börschig C, Chatzinotas A, Christ S, Daniel R, Diekoetter T, Fischer C, Friedl T, Glaser K, Hallman C, Hodaĉ L, Hölzel N, Jung K, Klein AM, Klaus V, Kleinebecker T, Krauss J, Lange M, Müller J, Nacke H, Pašaliæ E, Rillig M, Rothenwöhrer C, Schall P, Scherber C, Schulze W, Socher S, Steckel J, Steffan-Dewenter I, Türke M, Tscharntke T, Weiner C, Werner M, Westphal C, Wolters V, Wubet T, Gockel S, Gorke M, Hemp A, Renner SC, Schöning I, Pfeiffer S, König-Ries B, Buscot F, Linsenmair KE, Schulze ED, Weisser WW, Fischer M: Interannual variation in land-use intensity enhances grassland multidiversity, PNAS, in press, doi: 10.1073/pnas.1312213111.

Nathalie Matter | Universität Bern
Further information:
http://www.unibe.ch

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>