Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Variants in 3 genes account for most dog coat differences

31.08.2009
Method for pinpointing gene combinations useful for studies of human disease

Variants in just three genes acting in different combinations account for the wide range of coat textures seen in dogs — from the poodle's tight curls to the beagle's stick-straight fur. A team led by researchers from the National Human Genome Research Institute (NHGRI), part of the National Institutes of Health, reports these findings today in the advance online issue of the journal Science.

"This study is an elegant example of using genomic techniques to unravel the genetic basis of biological diversity," said NHGRI Scientific Director Eric Green, M.D., Ph.D. "Genomics continues to gain new insights from the amazing morphological differences seen across the canine species, including many that give clues about human biology and disease."

Until now, relatively little was known about the genes influencing the length, growth pattern and texture of the coats of dogs. The researchers performed a genome-wide scan of specific signposts of DNA variation, called single-nucleotide polymorphisms, in 1,000 individual dogs representing 80 breeds. These data were compared with descriptions of various coat types. Three distinct genetic variants emerged to explain, in combination, virtually all dog hair types.

"What's important for human health is the way we found the genes involved in dog coats and figured out how they work together, rather than the genes themselves," said Elaine A. Ostrander, Ph.D., chief of the Cancer Genetics Branch in NHGRI's Division of Intramural Research. "We think this approach will help pinpoint multiple genes involved in complex human conditions, such as cancer, heart disease, diabetes and obesity."

Artificial selection, at the heart of breeding for desirable traits in domesticated animals, has yielded rapid change in a short span of canine history. While researchers estimate that modern dog breeds diverged from wolves some 15,000 years ago, the genetic changes in the dog genome that create multiple coat types are more likely to have been pursued by breeders in just the past 200 years. In fact, breeds with short, straight hair, such as the beagle, display the original, more wolf-like versions of the three genes identified in the study.

Modern dog breeds are part of a unique population structure, having been selectively bred for many years. Based on this structure, the researchers were able to break down a complex phenotype — coat — into possible genetic variations. "When we put these genetic variants back together in different combinations, we found that we could create most of the coat varieties seen in what is among the most diverse species in the world — the dog," Dr. Ostrander said. "If we can decipher the genetic basis for a complex trait such as the dog's coat, we believe that we can do it as well with complex diseases."

Specifically, the researchers found an alteration in the RSPO2 gene that results in wiry hair that grows in a pattern that gives the dogs a mustachioed look with long details called furnishings. Examples of dogs with wiry coats are Scottish terriers, Irish terriers and schnauzers. Long hair that is silky or fluffy was linked to a variant in the FGF5 gene. Cocker spaniels, Pomeranians and long-haired Chihuahuas are examples of dogs with long coats. A variant in the KRT71 gene produces curly coated dogs, such as the Irish water spaniel. Finally, if all three variants are present, a dog has a long and curly coat with furnishings. Examples of this type of breed include poodles and Portuguese water dogs.

"We don't yet know the precise roles, if any, of these three genes in the variety of hair textures seen among humans," Dr. Ostrander said. The FGF5 (long hair) gene and KRT71 (curly) gene have been found to affect hair in mice and cats in addition to dogs, so humans may be included as well. The RSPO2 gene has not been previously identified to influence hair texture in mammals, but it does belong to a pathway that has been associated with a coarse hair type found in some people of East Asian ancestry.

The study's lead author, Edouard Cadieu, a graduate student in NHGRI's Cancer Genetics Branch, added, "The carefully controlled breeding of dogs offers advantages in pinpointing the genes that determine particular traits, which may have immediate application to the study of diseases, like cancer, that are common to both dogs and humans."

In addition to Ostrander and her colleagues at NHGRI, the research group included investigators from Cornell University in Ithaca, N.Y.; the University of California, Los Angeles; the University of Utah, Salt Lake City; the Faculty of Medicine, Rennes, France; and Affymetrix Corporation, Santa Clara, Calif.

This latest work utilized and built upon data generated by the NHGRI-supported sequencing and analysis of the dog genome. Researchers can access the dog sequence data through the following public databases: Dog Genome Resources (www.ncbi.nlm.nih.gov/genome/guide/dog) at NIH's National Center for Biotechnology Information (NCBI); EMBL Bank (www.ebi.ac.uk/index.html) at the European Molecular Biology Laboratory's Nucleotide Sequence Database; UCSC Genome Browser (www.genome.ucsc.edu) at the University of California at Santa Cruz; and at the Broad Institute Dog Genome Sequencing Project Web site (www.broad.mit.edu/mammals/dog). Other data may be viewed at dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP/) at NCBI.

To download photos of dogs that are examples of wiry, short and long coats, go to: http://www.genome.gov/pressDisplay.cfm?photoID=20174, http://www.genome.gov/pressDisplay.cfm?photoID=20175 and http://www.genome.gov/pressDisplay.cfm?photoID=20176.

NHGRI is one of the 27 institutes and centers at the NIH, an agency of the Department of Health and Human Services. The NHGRI Division of Intramural Research develops and implements technology to understand, diagnose and treat genomic and genetic diseases. Additional information about NHGRI can be found at its Web site, www.genome.gov.

The National Institutes of Health — "The Nation's Medical Research Agency" — includes 27 institutes and centers, and is a component of the U.S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments and cures for both common and rare diseases.

Geoff Spencer | EurekAlert!
Further information:
http://www.nih.gov

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>