Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Variants in 3 genes account for most dog coat differences

31.08.2009
Method for pinpointing gene combinations useful for studies of human disease

Variants in just three genes acting in different combinations account for the wide range of coat textures seen in dogs — from the poodle's tight curls to the beagle's stick-straight fur. A team led by researchers from the National Human Genome Research Institute (NHGRI), part of the National Institutes of Health, reports these findings today in the advance online issue of the journal Science.

"This study is an elegant example of using genomic techniques to unravel the genetic basis of biological diversity," said NHGRI Scientific Director Eric Green, M.D., Ph.D. "Genomics continues to gain new insights from the amazing morphological differences seen across the canine species, including many that give clues about human biology and disease."

Until now, relatively little was known about the genes influencing the length, growth pattern and texture of the coats of dogs. The researchers performed a genome-wide scan of specific signposts of DNA variation, called single-nucleotide polymorphisms, in 1,000 individual dogs representing 80 breeds. These data were compared with descriptions of various coat types. Three distinct genetic variants emerged to explain, in combination, virtually all dog hair types.

"What's important for human health is the way we found the genes involved in dog coats and figured out how they work together, rather than the genes themselves," said Elaine A. Ostrander, Ph.D., chief of the Cancer Genetics Branch in NHGRI's Division of Intramural Research. "We think this approach will help pinpoint multiple genes involved in complex human conditions, such as cancer, heart disease, diabetes and obesity."

Artificial selection, at the heart of breeding for desirable traits in domesticated animals, has yielded rapid change in a short span of canine history. While researchers estimate that modern dog breeds diverged from wolves some 15,000 years ago, the genetic changes in the dog genome that create multiple coat types are more likely to have been pursued by breeders in just the past 200 years. In fact, breeds with short, straight hair, such as the beagle, display the original, more wolf-like versions of the three genes identified in the study.

Modern dog breeds are part of a unique population structure, having been selectively bred for many years. Based on this structure, the researchers were able to break down a complex phenotype — coat — into possible genetic variations. "When we put these genetic variants back together in different combinations, we found that we could create most of the coat varieties seen in what is among the most diverse species in the world — the dog," Dr. Ostrander said. "If we can decipher the genetic basis for a complex trait such as the dog's coat, we believe that we can do it as well with complex diseases."

Specifically, the researchers found an alteration in the RSPO2 gene that results in wiry hair that grows in a pattern that gives the dogs a mustachioed look with long details called furnishings. Examples of dogs with wiry coats are Scottish terriers, Irish terriers and schnauzers. Long hair that is silky or fluffy was linked to a variant in the FGF5 gene. Cocker spaniels, Pomeranians and long-haired Chihuahuas are examples of dogs with long coats. A variant in the KRT71 gene produces curly coated dogs, such as the Irish water spaniel. Finally, if all three variants are present, a dog has a long and curly coat with furnishings. Examples of this type of breed include poodles and Portuguese water dogs.

"We don't yet know the precise roles, if any, of these three genes in the variety of hair textures seen among humans," Dr. Ostrander said. The FGF5 (long hair) gene and KRT71 (curly) gene have been found to affect hair in mice and cats in addition to dogs, so humans may be included as well. The RSPO2 gene has not been previously identified to influence hair texture in mammals, but it does belong to a pathway that has been associated with a coarse hair type found in some people of East Asian ancestry.

The study's lead author, Edouard Cadieu, a graduate student in NHGRI's Cancer Genetics Branch, added, "The carefully controlled breeding of dogs offers advantages in pinpointing the genes that determine particular traits, which may have immediate application to the study of diseases, like cancer, that are common to both dogs and humans."

In addition to Ostrander and her colleagues at NHGRI, the research group included investigators from Cornell University in Ithaca, N.Y.; the University of California, Los Angeles; the University of Utah, Salt Lake City; the Faculty of Medicine, Rennes, France; and Affymetrix Corporation, Santa Clara, Calif.

This latest work utilized and built upon data generated by the NHGRI-supported sequencing and analysis of the dog genome. Researchers can access the dog sequence data through the following public databases: Dog Genome Resources (www.ncbi.nlm.nih.gov/genome/guide/dog) at NIH's National Center for Biotechnology Information (NCBI); EMBL Bank (www.ebi.ac.uk/index.html) at the European Molecular Biology Laboratory's Nucleotide Sequence Database; UCSC Genome Browser (www.genome.ucsc.edu) at the University of California at Santa Cruz; and at the Broad Institute Dog Genome Sequencing Project Web site (www.broad.mit.edu/mammals/dog). Other data may be viewed at dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP/) at NCBI.

To download photos of dogs that are examples of wiry, short and long coats, go to: http://www.genome.gov/pressDisplay.cfm?photoID=20174, http://www.genome.gov/pressDisplay.cfm?photoID=20175 and http://www.genome.gov/pressDisplay.cfm?photoID=20176.

NHGRI is one of the 27 institutes and centers at the NIH, an agency of the Department of Health and Human Services. The NHGRI Division of Intramural Research develops and implements technology to understand, diagnose and treat genomic and genetic diseases. Additional information about NHGRI can be found at its Web site, www.genome.gov.

The National Institutes of Health — "The Nation's Medical Research Agency" — includes 27 institutes and centers, and is a component of the U.S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments and cures for both common and rare diseases.

Geoff Spencer | EurekAlert!
Further information:
http://www.nih.gov

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>