Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Variants in 3 genes account for most dog coat differences

Method for pinpointing gene combinations useful for studies of human disease

Variants in just three genes acting in different combinations account for the wide range of coat textures seen in dogs — from the poodle's tight curls to the beagle's stick-straight fur. A team led by researchers from the National Human Genome Research Institute (NHGRI), part of the National Institutes of Health, reports these findings today in the advance online issue of the journal Science.

"This study is an elegant example of using genomic techniques to unravel the genetic basis of biological diversity," said NHGRI Scientific Director Eric Green, M.D., Ph.D. "Genomics continues to gain new insights from the amazing morphological differences seen across the canine species, including many that give clues about human biology and disease."

Until now, relatively little was known about the genes influencing the length, growth pattern and texture of the coats of dogs. The researchers performed a genome-wide scan of specific signposts of DNA variation, called single-nucleotide polymorphisms, in 1,000 individual dogs representing 80 breeds. These data were compared with descriptions of various coat types. Three distinct genetic variants emerged to explain, in combination, virtually all dog hair types.

"What's important for human health is the way we found the genes involved in dog coats and figured out how they work together, rather than the genes themselves," said Elaine A. Ostrander, Ph.D., chief of the Cancer Genetics Branch in NHGRI's Division of Intramural Research. "We think this approach will help pinpoint multiple genes involved in complex human conditions, such as cancer, heart disease, diabetes and obesity."

Artificial selection, at the heart of breeding for desirable traits in domesticated animals, has yielded rapid change in a short span of canine history. While researchers estimate that modern dog breeds diverged from wolves some 15,000 years ago, the genetic changes in the dog genome that create multiple coat types are more likely to have been pursued by breeders in just the past 200 years. In fact, breeds with short, straight hair, such as the beagle, display the original, more wolf-like versions of the three genes identified in the study.

Modern dog breeds are part of a unique population structure, having been selectively bred for many years. Based on this structure, the researchers were able to break down a complex phenotype — coat — into possible genetic variations. "When we put these genetic variants back together in different combinations, we found that we could create most of the coat varieties seen in what is among the most diverse species in the world — the dog," Dr. Ostrander said. "If we can decipher the genetic basis for a complex trait such as the dog's coat, we believe that we can do it as well with complex diseases."

Specifically, the researchers found an alteration in the RSPO2 gene that results in wiry hair that grows in a pattern that gives the dogs a mustachioed look with long details called furnishings. Examples of dogs with wiry coats are Scottish terriers, Irish terriers and schnauzers. Long hair that is silky or fluffy was linked to a variant in the FGF5 gene. Cocker spaniels, Pomeranians and long-haired Chihuahuas are examples of dogs with long coats. A variant in the KRT71 gene produces curly coated dogs, such as the Irish water spaniel. Finally, if all three variants are present, a dog has a long and curly coat with furnishings. Examples of this type of breed include poodles and Portuguese water dogs.

"We don't yet know the precise roles, if any, of these three genes in the variety of hair textures seen among humans," Dr. Ostrander said. The FGF5 (long hair) gene and KRT71 (curly) gene have been found to affect hair in mice and cats in addition to dogs, so humans may be included as well. The RSPO2 gene has not been previously identified to influence hair texture in mammals, but it does belong to a pathway that has been associated with a coarse hair type found in some people of East Asian ancestry.

The study's lead author, Edouard Cadieu, a graduate student in NHGRI's Cancer Genetics Branch, added, "The carefully controlled breeding of dogs offers advantages in pinpointing the genes that determine particular traits, which may have immediate application to the study of diseases, like cancer, that are common to both dogs and humans."

In addition to Ostrander and her colleagues at NHGRI, the research group included investigators from Cornell University in Ithaca, N.Y.; the University of California, Los Angeles; the University of Utah, Salt Lake City; the Faculty of Medicine, Rennes, France; and Affymetrix Corporation, Santa Clara, Calif.

This latest work utilized and built upon data generated by the NHGRI-supported sequencing and analysis of the dog genome. Researchers can access the dog sequence data through the following public databases: Dog Genome Resources ( at NIH's National Center for Biotechnology Information (NCBI); EMBL Bank ( at the European Molecular Biology Laboratory's Nucleotide Sequence Database; UCSC Genome Browser ( at the University of California at Santa Cruz; and at the Broad Institute Dog Genome Sequencing Project Web site ( Other data may be viewed at dbSNP ( at NCBI.

To download photos of dogs that are examples of wiry, short and long coats, go to:, and

NHGRI is one of the 27 institutes and centers at the NIH, an agency of the Department of Health and Human Services. The NHGRI Division of Intramural Research develops and implements technology to understand, diagnose and treat genomic and genetic diseases. Additional information about NHGRI can be found at its Web site,

The National Institutes of Health — "The Nation's Medical Research Agency" — includes 27 institutes and centers, and is a component of the U.S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments and cures for both common and rare diseases.

Geoff Spencer | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>