Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vanderbilt Study Examines Bacteria’s Ability to Fight Obesity

29.07.2014

A probiotic that prevents obesity could be on the horizon.

Bacteria that produce a therapeutic compound in the gut inhibit weight gain, insulin resistance and other adverse effects of a high-fat diet in mice, Vanderbilt University investigators have discovered.

“Of course it’s hard to speculate from mouse to human,” said senior investigator Sean Davies, Ph.D., assistant professor of Pharmacology. “But essentially, we’ve prevented most of the negative consequences of obesity in mice, even though they’re eating a high-fat diet.”

Regulatory issues must be addressed before moving to human studies, Davies said, but the findings published in the August issue of the Journal of Clinical Investigation suggest that it may be possible to manipulate the bacterial residents of the gut — the gut microbiota — to treat obesity and other chronic diseases.

Davies has a long-standing interest in using probiotic bacteria — “friendly” bacteria like those in yogurt — to deliver drugs to the gut in a sustained manner, in order to eliminate the daily drug regimens associated with chronic diseases.

In 2007, he received a National Institutes of Health Director’s New Innovator Award to develop and test the idea.

“The NIH basically said, ‘we like this idea, now make it work,’” Davies said. “The New Innovator Award was critical to our success.”

Other studies have demonstrated that the natural gut microbiota plays a role in obesity, diabetes and cardiovascular disease.

“The types of bacteria you have in your gut influence your risk for chronic diseases,” Davies said. “We wondered if we could manipulate the gut microbiota in a way that would promote health.”

To start, the team needed a safe bacterial strain that colonizes the human gut. They selected E. coli Nissle 1917, which has been used as a probiotic treatment for diarrhea since its discovery nearly 100 years ago.

They genetically modified the E. coli Nissle strain to produce a lipid compound called NAPE, which is normally synthesized in the small intestine in response to feeding. NAPE is rapidly converted to NAE, a compound that reduces both food intake and weight gain. Some evidence suggests that NAPE production may be reduced in individuals eating a high-fat diet.
“NAPE seemed like a great compound to try — since it’s something that the host normally produces,” Davies said.

The investigators added the NAPE-producing bacteria to the drinking water of mice eating a high-fat diet for eight weeks.

Mice that received the modified bacteria had dramatically lower food intake, body fat, insulin resistance and fatty liver compared to mice receiving control bacteria.

They found that these protective effects persisted for at least four weeks after the NAPE-producing bacteria were removed from the drinking water. And even 12 weeks after the modified bacteria were removed, the treated mice still had much lower body weight and body fat compared to the control mice. Active bacteria no longer persisted after about six weeks.

“We still haven’t achieved our ultimate goal, which would be to do one treatment and then never have to administer the bacteria again,” Davies said. “Six weeks is pretty long to have active bacteria, and the animals are still less obese 12 weeks out.

“This paper provides a proof of concept,” he said. “Clearly, we can get enough bacteria to persist in the gut and have a sustained effect. We would like for that effect to last longer.”

Davies noted that the researchers also observed effects of the compounds in the liver, suggesting that it may be possible to use modified bacteria to deliver therapeutics beyond the gut.

The investigators are currently working on strategies to address regulatory issues related to containing the bacteria, for example by knocking out genes required for the bacteria to live outside the treated host.

Zhongyi Chen, M.D., Ph.D., and Lilu Guo, Ph.D., are co-first authors of the JCI paper. This research was supported by the New Innovator Award (OD003137) and by other grants from the National Institutes of Health (AT007830, DK059637, DK020593, RR024975, DK092993).

Harold Boerner | newswise
Further information:
http://www.vanderbilt.edu

Further reports about: NAPE Vanderbilt bacteria bacterial diseases high-fat investigators microbiota obesity produce strain weight

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>