Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vanderbilt Scientists Discover That Chemical Element Bromine Is Essential To Human Life

10.06.2014

Twenty-seven chemical elements are considered to be essential for human life. Now there is a 28th – bromine.

In a paper published Thursday by the journal Cell, Vanderbilt University researchers establish for the first time that bromine, among the 92 naturally-occurring chemical elements in the universe, is the 28th element essential for tissue development in all animals, from primitive sea creatures to humans.

“Without bromine, there are no animals. That’s the discovery,” said Billy Hudson, Ph.D., the paper’s senior author and Elliott V. Newman Professor of Medicine.

The researchers, led by co-first authors Scott McCall, Christopher Cummings, Ph.D., and Gautam (Jay) Bhave, M.D., Ph.D., showed that fruit flies died when bromine was removed from their diet but survived when bromine was restored.

... more about:
»Biology »Cell »Human »Medical »Medicine »bromine »defective »enzyme

This finding has important implications for human disease. “Multiple patient groups … have been shown to be bromine deficient,” said McCall, an M.D./Ph.D. student. Bromine supplementation may improve the health of patients on dialysis or total parenteral nutrition (TPN), for example.

The report is the latest in a series of landmark papers by the Vanderbilt group that have helped define how collagen IV scaffolds undergird the basement membrane of all tissues, including the kidney’s filtering units.

Hudson said the foundation for the discovery about bromine goes back 30 years when he was at the University of Kansas Medical School.

Curiosity about two rare kidney diseases led, in the mid-1980s, to the discovery of two previously unknown proteins that twist around each other to form the triple-helical collagen IV molecule, like cables supporting a bridge. Disease results when these cables are defective or damaged.

Hudson moved to Vanderbilt in 2002.

In 2009, colleagues led by Roberto Vanacore, Ph.D., assistant professor of Medicine, reported in Science magazine the discovery of a novel sulfilimine bond between a sulfur atom and a nitrogen atom that acts like a “fastener” to connect the collagen IV molecules forming scaffolds for cells.

A defective bond may trigger the rare auto-immune disease Goodpasture’s syndrome. The disorder is named for the late Vanderbilt pathologist and former medical school dean Ernest Goodpasture, M.D., who was best known for his contribution to the development of vaccines.
That discovery led to simple question: how is the bond formed?

In 2012, Bhave, assistant professor of Medicine, Cummings, now a postdoctoral fellow, and Vanacore led the effort that found the answer -- the enzyme peroxidasin.

Conserved across the animal kingdom, peroxidasin also may play a role in disease. An overactive enzyme may lead to excessive deposition of collagen IV and thickening of the basement membrane, which can impair kidney function, they reported in the journal Nature Chemical Biology.

In the current study, to which Vanacore and Andrea Page-McCaw, Ph.D., associate professor of Cell and Developmental Biology, also contributed, the scientists demonstrated the unique and essential role for ionic bromide as a “co-factor,” enabling peroxidasin to form the sulfilimine bond.

The chemical element bromine is thus “essential for animal development and tissue architecture,” they report.

The study was supported in part by National Institutes of Health grants DK018381, DK100094, GM007347, DK097306 and GM073883.

Craig Boerner | newswise
Further information:
http://www.vanderbilt.edu

Further reports about: Biology Cell Human Medical Medicine bromine defective enzyme

More articles from Life Sciences:

nachricht Rice University lab runs crowd-sourced competition to create 'big data' diagnostic tools
30.06.2016 | Rice University

nachricht A protein coat helps chromosomes keep their distance
30.06.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Thousands on one chip: New Method to study Proteins

Since the completion of the human genome an important goal has been to elucidate the function of the now known proteins: a new molecular method enables the investigation of the function for thousands of proteins in parallel. Applying this new method, an international team of researchers with leading participation of the Technical University of Munich (TUM) was able to identify hundreds of previously unknown interactions among proteins.

The human genome and those of most common crops have been decoded for many years. Soon it will be possible to sequence your personal genome for less than 1000...

Im Focus: Optical lenses, hardly larger than a human hair

3D printing enables the smalles complex micro-objectives

3D printing revolutionized the manufacturing of complex shapes in the last few years. Using additive depositing of materials, where individual dots or lines...

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Quantum technologies to revolutionise 21st century - Nobel Laureates discuss at Lindau

30.06.2016 | Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

 
Latest News

Modeling NAFLD with human pluripotent stem cell derived immature hepatocyte like cells

30.06.2016 | Health and Medicine

Rice University lab runs crowd-sourced competition to create 'big data' diagnostic tools

30.06.2016 | Life Sciences

A drop of water as a model for the interplay of adhesion and stiction

30.06.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>