Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Valuable tool for predicting pain genes in people

07.12.2012
Scientists in Australia and Austria have described a "network map" of genes involved in pain perception, with remarkable similarity from fruit flies to people. The work should help identify new analgesic drugs.

Dr Greg Neely from the Garvan institute of Medical Research in Sydney and Professor Josef Penninger from the Austrian Academy of Sciences in Vienna had previously screened the 14,000 genes in the fly genome and identified 580 genes identified with heat perception. In the current study, using a database from the US National Centre for Biotechnology Information, they noted roughly 400 equivalent genes in people, 35% of which are already suspected to be pain genes.

The map they constructed using fly and human data includes many known genes, as well as hundreds of new genes and pathways, and demonstrates exceptional evolutionary conservation of molecular mechanisms across species. This should not be surprising, as any creature must be able to identify a source of pain or danger in order to survive.

Comparing fly with human data, they could see that a particular kind of molecular signaling (phospholipid signaling), already implicated in pain processing, appeared in the pain network. Further, they demonstrated the importance of two enzymes that make phospholipids, by removing those enzymes from mice, making them hypersensitive to heat pain. These results are now published online in the international journal PLOS Genetics.

"Pain affects hundreds of millions of people and is a research field badly in need of new approaches and discoveries," said Dr Neely.

"The fact that evolution has done such a remarkable job of conserving pain genes across species makes our fly data very useful, because much of it translates to rodents and people.

"We are able to test our hypotheses in mice, and if a gene or pathway or process functions as we predict, there is a good chance it will also apply to people.

"By cross-referencing fly data with human information already in the public domain – like gene expression profiling or genetic association studies – we know we'll be able to pinpoint new therapeutic targets."

ABOUT GARVAN

The Garvan Institute of Medical Research was founded in 1963. Initially a research department of St Vincent's Hospital in Sydney, it is now one of Australia's largest medical research institutions with over 600 scientists, students and support staff. Garvan's main research areas are: Cancer, Diabetes & Obesity, Immunology and Inflammation and Neuroscience. Garvan's mission is to make significant contributions to medical science that will change the directions of science and medicine and have major impacts on human health. The outcome of Garvan's discoveries is the development of better methods of diagnosis, treatment, and ultimately, prevention of disease.

MEDIA ENQUIRIES

Alison Heather
Science Communications Manager
Garvan Institute of Medical Research
+61 2 9295 8128
+61 434 071 326
a.heather "at" garvan.org.au

Iris Hui | EurekAlert!
Further information:
http://www.researchaustralia.org

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>