Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Valuable tool for predicting pain genes in people

07.12.2012
Scientists in Australia and Austria have described a "network map" of genes involved in pain perception, with remarkable similarity from fruit flies to people. The work should help identify new analgesic drugs.

Dr Greg Neely from the Garvan institute of Medical Research in Sydney and Professor Josef Penninger from the Austrian Academy of Sciences in Vienna had previously screened the 14,000 genes in the fly genome and identified 580 genes identified with heat perception. In the current study, using a database from the US National Centre for Biotechnology Information, they noted roughly 400 equivalent genes in people, 35% of which are already suspected to be pain genes.

The map they constructed using fly and human data includes many known genes, as well as hundreds of new genes and pathways, and demonstrates exceptional evolutionary conservation of molecular mechanisms across species. This should not be surprising, as any creature must be able to identify a source of pain or danger in order to survive.

Comparing fly with human data, they could see that a particular kind of molecular signaling (phospholipid signaling), already implicated in pain processing, appeared in the pain network. Further, they demonstrated the importance of two enzymes that make phospholipids, by removing those enzymes from mice, making them hypersensitive to heat pain. These results are now published online in the international journal PLOS Genetics.

"Pain affects hundreds of millions of people and is a research field badly in need of new approaches and discoveries," said Dr Neely.

"The fact that evolution has done such a remarkable job of conserving pain genes across species makes our fly data very useful, because much of it translates to rodents and people.

"We are able to test our hypotheses in mice, and if a gene or pathway or process functions as we predict, there is a good chance it will also apply to people.

"By cross-referencing fly data with human information already in the public domain – like gene expression profiling or genetic association studies – we know we'll be able to pinpoint new therapeutic targets."

ABOUT GARVAN

The Garvan Institute of Medical Research was founded in 1963. Initially a research department of St Vincent's Hospital in Sydney, it is now one of Australia's largest medical research institutions with over 600 scientists, students and support staff. Garvan's main research areas are: Cancer, Diabetes & Obesity, Immunology and Inflammation and Neuroscience. Garvan's mission is to make significant contributions to medical science that will change the directions of science and medicine and have major impacts on human health. The outcome of Garvan's discoveries is the development of better methods of diagnosis, treatment, and ultimately, prevention of disease.

MEDIA ENQUIRIES

Alison Heather
Science Communications Manager
Garvan Institute of Medical Research
+61 2 9295 8128
+61 434 071 326
a.heather "at" garvan.org.au

Iris Hui | EurekAlert!
Further information:
http://www.researchaustralia.org

More articles from Life Sciences:

nachricht Kidney tumor: Genetic trigger discovered
18.06.2018 | Julius-Maximilians-Universität Würzburg

nachricht New type of photosynthesis discovered
18.06.2018 | Imperial College London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>