Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New vaccines may come from forcing giardia parasite to display its many disguises

30.04.2010
The intestinal parasite Giardia lamblia changes outfits nearly as often as a fashion model on a Parisian runway. With more than 200 protein coats in its molecular wardrobe, this troublesome creature—the cause of innumerable cases of diarrheal infections each year—can change its appearance from one instant to the next, throwing the body's immune cells off track.

Now Hugo Luján, a Howard Hughes Medical Institute international research scholar, reports that Giardia's extensive wardrobe of surface proteins might actually be its own downfall.

In an advance online publication in the journal Nature Medicine on April 25, 2010, Luján shows that Giardia parasites engineered to express all their surface proteins worked as vaccines that could help prevent or mitigate future infections. The same "overdressed" parasites offer protection when given orally to gerbils infected with Giardia, he says, though the idea still needs to be tested in humans.

Luján believes Giardia's hardy surface proteins—which help the parasite thrive in the harsh, acidic environments of the stomach and upper intestine—might eventually be used to deliver vaccines not just against Giardia but other parasites too, including malaria. "They could allow us to save money and lives," he says. "These proteins help the parasite survive but we're planning to use that armor to make new, oral vaccines."

A professor at the Catholic University of Córdoba, in Argentina, Luján's fascination with Giardia dates back to his days as a postdoctoral fellow in parasitology, working with Theodore Nash at the National Institutes of Health. Luján remembers being intrigued by Giardia's simplicity. Confining the parasite to a culture tube had no effect on its lifecycle, which made it easy to study and manipulate the organism. Upon returning to Argentina, Luján continued his research on Giardia, and in 2008, he reported that the shifty organism changes its appearance between 200 different protein coats using a molecular process called RNA interference (RNAi). As proof that RNAi was critical to the bug's "invisibility," he disabled its RNAi mechanism, and found that all the surface proteins appeared at once.

Luján reasoned that this genetically-altered parasite might make an optimal vaccine. Ordinarily, children in developing countries suffer the most from routine Giardia infections, which they usually get from drinking contaminated water. Adults rarely get as sick because they have built up immunity from earlier contact with the parasite. Luján's hypothesis was that a child exposed to all Giardia's surface proteins at once would be primed to resist any future infection.

Luján's team tested out the hypothesis on gerbils, which are a good model for scientists because they can be infected with the same Giardia parasites that attack humans. Those exposed to parasites expressing just one surface protein were re-infected easily by parasites expressing a different surface protein. But gerbils that had been exposed to a strain of Giardia that expressed all 200 surface proteins were less likely to be reinfected. Another welcome surprise was that the isolated proteins were non-toxic and elicited an immune response. According to Luján, this is the first time researchers have generated a vaccine purely from proteins, which can be stored at room temperature and delivered orally, both necessities for a vaccine that can be easily delivered in the developing world.

Luján plans to leverage the proteins' resistance to gastrointestinal enzymes by testing whether they can ferry other oral vaccinations into the body. In many cases, the surface proteins expressed by infectious pathogens are destroyed in the gastrointestinal tract before the immune system has a chance to respond. That's in part why oral vaccines for illnesses like malaria haven't been practical. But if attached to surface proteins from Giardia, Luján says, these antigens might survive in the gastrointestinal tract long enough to be recognized by the immune system.

"This could be a huge development," says Luján, who recently filed a patent application on his research with the U.S. Patent and Trademark Office. "Hopefully, we'll be able to use this system to make vaccinations that we can give in a very convenient way. Giardia's surface proteins are fascinating, and now we're finding that we can exploit what the parasite uses to defend itself to our own favor."

Andrea Widener | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>