Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New vaccines may come from forcing giardia parasite to display its many disguises

30.04.2010
The intestinal parasite Giardia lamblia changes outfits nearly as often as a fashion model on a Parisian runway. With more than 200 protein coats in its molecular wardrobe, this troublesome creature—the cause of innumerable cases of diarrheal infections each year—can change its appearance from one instant to the next, throwing the body's immune cells off track.

Now Hugo Luján, a Howard Hughes Medical Institute international research scholar, reports that Giardia's extensive wardrobe of surface proteins might actually be its own downfall.

In an advance online publication in the journal Nature Medicine on April 25, 2010, Luján shows that Giardia parasites engineered to express all their surface proteins worked as vaccines that could help prevent or mitigate future infections. The same "overdressed" parasites offer protection when given orally to gerbils infected with Giardia, he says, though the idea still needs to be tested in humans.

Luján believes Giardia's hardy surface proteins—which help the parasite thrive in the harsh, acidic environments of the stomach and upper intestine—might eventually be used to deliver vaccines not just against Giardia but other parasites too, including malaria. "They could allow us to save money and lives," he says. "These proteins help the parasite survive but we're planning to use that armor to make new, oral vaccines."

A professor at the Catholic University of Córdoba, in Argentina, Luján's fascination with Giardia dates back to his days as a postdoctoral fellow in parasitology, working with Theodore Nash at the National Institutes of Health. Luján remembers being intrigued by Giardia's simplicity. Confining the parasite to a culture tube had no effect on its lifecycle, which made it easy to study and manipulate the organism. Upon returning to Argentina, Luján continued his research on Giardia, and in 2008, he reported that the shifty organism changes its appearance between 200 different protein coats using a molecular process called RNA interference (RNAi). As proof that RNAi was critical to the bug's "invisibility," he disabled its RNAi mechanism, and found that all the surface proteins appeared at once.

Luján reasoned that this genetically-altered parasite might make an optimal vaccine. Ordinarily, children in developing countries suffer the most from routine Giardia infections, which they usually get from drinking contaminated water. Adults rarely get as sick because they have built up immunity from earlier contact with the parasite. Luján's hypothesis was that a child exposed to all Giardia's surface proteins at once would be primed to resist any future infection.

Luján's team tested out the hypothesis on gerbils, which are a good model for scientists because they can be infected with the same Giardia parasites that attack humans. Those exposed to parasites expressing just one surface protein were re-infected easily by parasites expressing a different surface protein. But gerbils that had been exposed to a strain of Giardia that expressed all 200 surface proteins were less likely to be reinfected. Another welcome surprise was that the isolated proteins were non-toxic and elicited an immune response. According to Luján, this is the first time researchers have generated a vaccine purely from proteins, which can be stored at room temperature and delivered orally, both necessities for a vaccine that can be easily delivered in the developing world.

Luján plans to leverage the proteins' resistance to gastrointestinal enzymes by testing whether they can ferry other oral vaccinations into the body. In many cases, the surface proteins expressed by infectious pathogens are destroyed in the gastrointestinal tract before the immune system has a chance to respond. That's in part why oral vaccines for illnesses like malaria haven't been practical. But if attached to surface proteins from Giardia, Luján says, these antigens might survive in the gastrointestinal tract long enough to be recognized by the immune system.

"This could be a huge development," says Luján, who recently filed a patent application on his research with the U.S. Patent and Trademark Office. "Hopefully, we'll be able to use this system to make vaccinations that we can give in a very convenient way. Giardia's surface proteins are fascinating, and now we're finding that we can exploit what the parasite uses to defend itself to our own favor."

Andrea Widener | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>