Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vaccine Blocks Malaria Transmission in Lab Experiments

24.07.2009
Researchers at the Johns Hopkins Malaria Research Institute have for the first time produced a malarial protein (Pfs48/45) in the proper conformation and quantity to generate a significant immune response in mice and non-human primates for use in a potential transmission-blocking vaccine.

Antibodies induced by Pfs48/45 protein vaccine effectively blocked the sexual development of the malaria-causing parasite, Plasmodium, as it grows within the mosquito. Sexual development is a critical step in the parasite’s life cycle and necessary for continued transmission of malaria from mosquitoes to humans. The study is published in the July 22 edition of the journal PLoS ONE.

“Development of a successful transmission-blocking vaccine is an essential step in efforts to control the global spread of malaria. In our study, we demonstrate the relative ease of expression and induction of potent transmission-blocking antibodies in mice and non-human primates. This approach provides a compelling rationale and basis for testing a transmission-blocking vaccine in humans,” said Nirbhay Kumar, PhD, senior author of the study and professor in Johns Hopkins Bloomberg School of Public Health’s W. Harry Feinstone Department of Molecular Microbiology and Immunology.

For the study, the research team expressed full-length Pfs48/45 in E. coli bacteria to produce the vaccine. Previous attempts to fully express the protein had not been successful. The vaccine was first given to mice in the laboratory. The vaccine was also tested in non-human primates (Olive baboons) in Kenya with similar results. According to the study, a single-dose vaccine provided a 93 percent transmission-blocking immune response, reaching greater than 98 percent after a booster given several months later.

“This is an exciting beginning to what might become an important tool in the arsenal for malaria control and progressive elimination of malaria transmission,” said Kumar. There is no animal reservoir for human malaria and in that regard it is possible to gradually reduce malaria transmission to a point of almost eradication. However, Kumar cautioned that more research is needed to achieve that goal. For one, similar research efforts are needed to reduce transmission of Plasmodium vivax, another major human malaria parasite.

Malaria affects greater than 500 million people worldwide and is estimated to kill over one million people each year, most of whom are children living in Africa.

In addition to Kumar, “A Potent Malaria Transmission-Blocking Vaccine Based on Condon Harmonized Full Length Pfs48/45 Expressed in E. Coli” was published by Debabani Roy Chowdhury, a postdoctoral fellow of the Johns Hopkins Bloomberg School of Public Health; Evelina Angov of the U.S. Military Malaria Vaccine Program; and Thomas Kariuki of the Institute of Primate Research in Nairobi, Kenya.

The research was supported by grants from the National Institutes of Health and the Johns Hopkins Malaria Research Institute.

Tim Parsons | Newswise Science News
Further information:
http://www.jhsph.edu

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>