Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vaccine Blocks Malaria Transmission in Lab Experiments

24.07.2009
Researchers at the Johns Hopkins Malaria Research Institute have for the first time produced a malarial protein (Pfs48/45) in the proper conformation and quantity to generate a significant immune response in mice and non-human primates for use in a potential transmission-blocking vaccine.

Antibodies induced by Pfs48/45 protein vaccine effectively blocked the sexual development of the malaria-causing parasite, Plasmodium, as it grows within the mosquito. Sexual development is a critical step in the parasite’s life cycle and necessary for continued transmission of malaria from mosquitoes to humans. The study is published in the July 22 edition of the journal PLoS ONE.

“Development of a successful transmission-blocking vaccine is an essential step in efforts to control the global spread of malaria. In our study, we demonstrate the relative ease of expression and induction of potent transmission-blocking antibodies in mice and non-human primates. This approach provides a compelling rationale and basis for testing a transmission-blocking vaccine in humans,” said Nirbhay Kumar, PhD, senior author of the study and professor in Johns Hopkins Bloomberg School of Public Health’s W. Harry Feinstone Department of Molecular Microbiology and Immunology.

For the study, the research team expressed full-length Pfs48/45 in E. coli bacteria to produce the vaccine. Previous attempts to fully express the protein had not been successful. The vaccine was first given to mice in the laboratory. The vaccine was also tested in non-human primates (Olive baboons) in Kenya with similar results. According to the study, a single-dose vaccine provided a 93 percent transmission-blocking immune response, reaching greater than 98 percent after a booster given several months later.

“This is an exciting beginning to what might become an important tool in the arsenal for malaria control and progressive elimination of malaria transmission,” said Kumar. There is no animal reservoir for human malaria and in that regard it is possible to gradually reduce malaria transmission to a point of almost eradication. However, Kumar cautioned that more research is needed to achieve that goal. For one, similar research efforts are needed to reduce transmission of Plasmodium vivax, another major human malaria parasite.

Malaria affects greater than 500 million people worldwide and is estimated to kill over one million people each year, most of whom are children living in Africa.

In addition to Kumar, “A Potent Malaria Transmission-Blocking Vaccine Based on Condon Harmonized Full Length Pfs48/45 Expressed in E. Coli” was published by Debabani Roy Chowdhury, a postdoctoral fellow of the Johns Hopkins Bloomberg School of Public Health; Evelina Angov of the U.S. Military Malaria Vaccine Program; and Thomas Kariuki of the Institute of Primate Research in Nairobi, Kenya.

The research was supported by grants from the National Institutes of Health and the Johns Hopkins Malaria Research Institute.

Tim Parsons | Newswise Science News
Further information:
http://www.jhsph.edu

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>