Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UWM researcher predicts stem cell fate with software

17.02.2010
Unique program analyzes time-lapse images to identify changes in cell behaviors

A software program created by an engineer at the University of Wisconsin–Milwaukee (UWM) can not only predict the types of specialized cells a stem cell will produce, but also foresee the outcome before the stem cell even divides.

The software, developed by Andrew Cohen, an assistant professor of electrical engineering, analyzes time-lapse images capturing live stem cell behaviors. It will allow scientists to search for mechanisms that control stem cell specialization, the main obstacle in advancing the use of stem cell therapy for treatment of disease. It could also lead to new research into causes of cancer, which involves cells that continuously self-renew.

Stem cells play a key role in human development, and also offer the potential to repair tissues or organs damaged by disease or injury. But, in order to use stem cell-based therapies, biologists need to better understand the mechanisms that control stem cell differentiation.

"This is a brand-new set of tools for developmental biologists," says Cohen, "and it supports an area where no other predictive solutions exist."

The research is published Feb. 7 in the journal Nature Methods. Co-authors are Michel Cayouette and Francisco Gomez neurobiologists at the Institut de recherches cliniques de Montreal, and Badri Roysam, a computer engineering professor at Rensselaer Polytechnic Institute.

The software is 87 percent accurate in determining the specific "offspring" a stem cell will ultimately produce, and 99 percent accurate in predicting when self-renewal of these stem cells will end in specialization.

A hunt for markers

As an example of the software's utility, Cohen cites using stem cells to treat the eye disease macular degeneration. The stem cells would need to produce more photoreceptor neurons for treatment to succeed. "But if you simply implant the stem cells into the retina, there are other types of cells that could develop," he says, "and that could potentially make the patient's vision worse."

Finding a solution has been hampered by the fact that there are very few markers that can predict cell division outcomes.

Subtle behaviors that characterize populations of stem cells with different fates are difficult or impossible for human observers to recognize. Cohen's tool, which runs on a standard PC, is able to track and generate predictions for up to 40 cells in real time. It outperforms the human eye in detecting differences in how the cells change over time.

Current methods of observing live cells produce terabytes of data, a volume that requires massive amounts of computation to find the most relevant information. A new computer cluster in CEAS was acquired for just this kind of research. To manage the predictive aspects of the program, Cohen used a uniquely sensitive mathematical approach based on algorithmic information theory.

Answers in DNA

Scientists know little about programming of stem cell outcomes except that it is a multifaceted process.

"In many cases, stem cells take their developmental cues from their environment," says Cohen. "Part of the programming mechanism is determined by surrounding cells. But once these cells begin to develop in a particular way, their offspring continue down that path even if the environment changes. So at some point they have been programmed to their fate."

The researchers designed the software to be used for isolating the genes and proteins that control the specialization process, which could allow researchers to identify and ultimately manipulate these programmed mechanisms.

Brian Link is a developmental biologist at the Medical College of Wisconsin who works with Cohen but is not an author on the Nature Methods paper. The two will be putting the software to the test to study behaviors of organelles within the cell as indicators of stem cell fate.

"The method isn't perfect," says Link. "It doesn't tell us about the influence of the behaviors. It tells us that a particular behavior is important, but it doesn't tell us how."

Still, the tool has already proven itself, he says. In a study of stem cells from the retinas of rats, Cohen's software independently confirmed the significance of at least one of the cell behaviors that Link's lab had previously identified using a gene manipulation technique

Andrew Cohen | EurekAlert!
Further information:
http://www.uwm.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>