Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UW researchers discover the brain origins of variation in pathological anxiety

26.03.2013
New findings from nonhuman primates suggest that an overactive core circuit in the brain, and its interaction with other specialized circuits, accounts for the variability in symptoms shown by patients with severe anxiety.

In a brain-imaging study to be published online today in the Proceedings of the National Academy of Sciences (PNAS), researchers from the University of Wisconsin School of Medicine and Public Health describe work that for the first time provides an understanding of the root causes of clinical variability in anxiety disorders.

Using a well-established nonhuman primate model of childhood anxiety, the scientists identified a core circuit that is chronically over-active in all anxious individuals, regardless of their particular pattern of symptoms. They also identified a set of more specialized circuits that are over- or under-active in individuals prone to particular symptoms, such as chronically high levels of the stress-hormone cortisol.

"These findings provide important new insights into altered brain functioning that explain why people with anxiety have such different symptoms and clinical presentations, and it also gives us new ideas, based on an understanding of altered brain function, for helping people with different types of anxiety,'' says Dr. Ned Kalin, senior author, chair of Psychiatry and director of the HealthEmotions Research Institute.

"There is a large need for new treatment strategies, because our current treatments don't work well for many anxious adults and children who come to us for help."

In the study, key anxiety-related symptoms were measured in 238 young rhesus monkeys using behavioral and hormonal measurement procedures similar to those routinely used to assess extreme shyness in children. Young monkeys are ideally suited for these studies because of their similarities in brain development and social behavior, Kalin noted. Variation in brain activity was quantified in the monkeys using positron emission tomography (PET) imaging, a method that is also used in humans.

Combining behavioral measures of shyness, physiological measures of the stress-hormone cortisol, and brain metabolic imaging, co-lead authors Dr. Alexander Shackman, Andrew Fox, and their collaborators showed that a core neural system marked by elevated activity in the central nucleus of the amygdala was a consistent brain signature shared by young monkeys with chronically high levels of anxiety. This was true despite striking differences across monkeys in the predominance of particular anxiety-related symptoms.

The Wisconsin researchers also showed that young monkeys with particular anxiety profiles, such as high levels of shyness, showed changes in symptom-specific brain circuits. Finally, Shackman, Fox, and colleagues uncovered evidence that the two kinds of brain circuits, one shared by all anxious individuals, the other specific to those with particular symptoms, work together to produce different presentations of pathological anxiety.

The new study builds upon earlier work by the Kalin laboratory demonstrating that activity in the amygdala is strongly shaped by early-life experiences, such as parenting and social interactions. They hypothesize that extreme anxiety stems from problems with the normal maturation of brain systems involved in emotional learning, which suggests that anxious children have difficulty learning to effectively regulate brain anxiety circuits. Taken together, this line of research sets the stage for improved strategies for preventing extreme childhood anxiety from blossoming into full-blown anxiety disorders.

"This means the amygdala is an extremely attractive target for new, broad-spectrum anxiety treatments,'' says Shackman. "The central nucleus of the amygdala is a uniquely malleable substrate for anxiety, one that can help to trigger a wide range of symptoms."

The work also suggests more specific brain targets for different symptom profiles. Such therapies could range from new, more selectively targeted medications to intensive therapies that seek to re-train the amygdala, ranging from conventional cognitive-behavioral therapies to training in mindfulness and other techniques, Shackman noted. To further understand the clinical significance of these observations, the laboratory is conducting a parallel study in young children suffering from anxiety disorders.

Other members of the research team include Dr. Jonathan Oler, Steven Shelton and Dr. Richard Davidson, all of the University of Wisconsin-Madison. Dr. Shackman is in the process of moving to the University of Maryland as an assistant professor. An abstract is available here: http://www.pnas.org/

Susan Lampert Smith | EurekAlert!
Further information:
http://www.uwhealth.org

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Heating quantum matter: A novel view on topology

22.08.2017 | Physics and Astronomy

Stretchable biofuel cells extract energy from sweat to power wearable devices

22.08.2017 | Power and Electrical Engineering

New technique to treating mitral valve diseases: First patient data

22.08.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>