Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UW-Madison scientists create super-strong collagen

13.01.2010
A team of University of Wisconsin-Madison researchers has created the strongest form of collagen known to science, a stable alternative to human collagen that could one day be used to treat arthritis and other conditions that result from collagen defects.

"It's by far the most stable collagen ever made," says Ron Raines, a University of Wisconsin-Madison professor of chemistry and biochemistry who led the study, published in the Jan. 12 issue of the Proceedings of the National Academy of Sciences.

Collagen is the most abundant protein in the human body, forming strong sheets and cables that support the structure of skin, internal organs, cartilage and bones, as well as all the connective tissue in between. For decades, doctors have used collagen from cows to treat serious burns and other wounds in humans despite the risk of tissue rejection associated with cross-species transplants.

In 2006, Raines' team figured out how to make human collagen in the lab, creating collagen molecules longer than any found in nature. Now, with funding from the National Institutes of Health, the researchers have taken this line of inquiry one step further, creating a form of super-strong collagen that may one day help millions. Raines says this artificial collagen holds promise as a therapy for conditions such as arthritis, which is caused by a breakdown of the body's natural collagen and affects more than 46 million Americans.

To make the new form of collagen, Raines' team substituted two-thirds of the protein's regular amino acids with less-flexible versions that stiffened the overall structure of the protein and helped it hold its form. "The breakthrough of this approach was the use of rigid analogues that have shapes similar to [the shapes the natural amino acids take] in the folded, functional form of the protein," explains Raines.

The resulting collagen holds together at temperatures far above what it takes for natural collagen to fall apart. And although it's built largely from amino acids that aren't found in nature, X-ray crystallography confirms that the three-dimensional structure of the lab-made collagen is indistinguishable from that of natural collagen, according to UW-Madison bacteriologist Katrina Forest, a co-author of the study.

"This hyper-stable collagen is really a testament to the power of modern protein chemistry," says Raines.

Nicole Miller, 608-262-3636, nemiller2@wisc.edu

Ron Raines | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>