Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UW-Madison scientists create super-strong collagen

13.01.2010
A team of University of Wisconsin-Madison researchers has created the strongest form of collagen known to science, a stable alternative to human collagen that could one day be used to treat arthritis and other conditions that result from collagen defects.

"It's by far the most stable collagen ever made," says Ron Raines, a University of Wisconsin-Madison professor of chemistry and biochemistry who led the study, published in the Jan. 12 issue of the Proceedings of the National Academy of Sciences.

Collagen is the most abundant protein in the human body, forming strong sheets and cables that support the structure of skin, internal organs, cartilage and bones, as well as all the connective tissue in between. For decades, doctors have used collagen from cows to treat serious burns and other wounds in humans despite the risk of tissue rejection associated with cross-species transplants.

In 2006, Raines' team figured out how to make human collagen in the lab, creating collagen molecules longer than any found in nature. Now, with funding from the National Institutes of Health, the researchers have taken this line of inquiry one step further, creating a form of super-strong collagen that may one day help millions. Raines says this artificial collagen holds promise as a therapy for conditions such as arthritis, which is caused by a breakdown of the body's natural collagen and affects more than 46 million Americans.

To make the new form of collagen, Raines' team substituted two-thirds of the protein's regular amino acids with less-flexible versions that stiffened the overall structure of the protein and helped it hold its form. "The breakthrough of this approach was the use of rigid analogues that have shapes similar to [the shapes the natural amino acids take] in the folded, functional form of the protein," explains Raines.

The resulting collagen holds together at temperatures far above what it takes for natural collagen to fall apart. And although it's built largely from amino acids that aren't found in nature, X-ray crystallography confirms that the three-dimensional structure of the lab-made collagen is indistinguishable from that of natural collagen, according to UW-Madison bacteriologist Katrina Forest, a co-author of the study.

"This hyper-stable collagen is really a testament to the power of modern protein chemistry," says Raines.

Nicole Miller, 608-262-3636, nemiller2@wisc.edu

Ron Raines | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>