UVA radiation damages DNA in human melanocyte skin cells and can lead to melanoma

“For the first time, UVA rays have been shown to cause significant damage to the DNA of human melanocyte skin cells,” says Moon-shong Tang, PhD, professor of environmental medicine, pathology and medicine at NYU School of Medicine. “And because melanocytes have a reduced capacity to repair DNA damage from UVA radiation, they mutate more frequently, potentially leading to the development of melanoma.”

In this study, researchers exposed lightly and darkly pigmented human melanocytes to UVA radiation and assessed DNA damage and the capacity of these cells to repair damaged DNA. DNA damage was detected in all melanocyte cells and these cells were unable to repair the damage. Normal skin cells were also exposed to UVA light but no damage to their DNA was observed.

“Identifying the underlying causes of melanoma allows researchers to develop new ways to assess a person's risk of melanoma, prevent the disease and aid in the design of more effective treatments,” said Dr. Tang, who is also a member of the NYU Cancer Institute.

Sunlight in the form of UVA radiation causes oxygen in melanocytes to damage DNA. Thus, oxidative DNA damage adversely affects transcription and DNA replication in melanocytes. The authors concluded that UVA-induced oxidative DNA damage in melanocytes and the inherently reduced repair capacity in these cells are the two key factors that contribute to melanoma on the skin.

The authors also discovered the underlying mechanism to explain why melanoma can also develop in areas never exposed to sunlight: Because melanocytes generally have a limited capacity to repair any DNA damage, they have a higher mutation frequency rate and are more susceptible to the development of melanoma—even without the effects of the sun.

“Melanoma, the deadliest form of skin cancer, continues to increase at a rate of 3 percent a year,” says Dr. Tang. “This research highlights the necessity of limiting UVA radiation by avoiding excessive sunlight, tanning and sunbeds.”

The study received funding from the National Institutes of Health in Bethesda, Maryland. It was published early online and will be appear in the print edition of the Proceedings of the National Academy of Sciences on July 6, 2010.

About NYU Langone Medical Center

NYU Langone Medical Center is one of the nation's premier centers of excellence in healthcare, biomedical research, and medical education. For over 170 years, NYU physicians and researchers have made countless contributions to the practice and science of health care. Today the Medical Center consists of NYU School of Medicine, including the Smilow Research Center, the Skirball Institute of Biomolecular Medicine, and the Sackler Institute of Graduate Biomedical Sciences; and the NYU Hospitals Center, including Tisch Hospital, a 705-bed acute-care general hospital, Rusk Institute of Rehabilitation Medicine, the first and largest facility of its kind, and NYU Hospital for Joint Diseases, a leader in musculoskeletal care, a Clinical Cancer Center and numerous ambulatory sites.

Media Contact

Lauren Woods EurekAlert!

More Information:

http://www.nyumc.org

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors