Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UVA radiation damages DNA in human melanocyte skin cells and can lead to melanoma

A new study by researchers at NYU School of Medicine found that UVA radiation damages the DNA in human melanocyte cells, causing mutations that can lead to melanoma. Melanocytes, which contain a substance called melanin that darkens the skin to protect it from the ultraviolet rays of the sun, are more vulnerable to UVA radiation than normal skin cells because they are unable to repair themselves as efficiently.

"For the first time, UVA rays have been shown to cause significant damage to the DNA of human melanocyte skin cells," says Moon-shong Tang, PhD, professor of environmental medicine, pathology and medicine at NYU School of Medicine. "And because melanocytes have a reduced capacity to repair DNA damage from UVA radiation, they mutate more frequently, potentially leading to the development of melanoma."

In this study, researchers exposed lightly and darkly pigmented human melanocytes to UVA radiation and assessed DNA damage and the capacity of these cells to repair damaged DNA. DNA damage was detected in all melanocyte cells and these cells were unable to repair the damage. Normal skin cells were also exposed to UVA light but no damage to their DNA was observed.

"Identifying the underlying causes of melanoma allows researchers to develop new ways to assess a person's risk of melanoma, prevent the disease and aid in the design of more effective treatments," said Dr. Tang, who is also a member of the NYU Cancer Institute.

Sunlight in the form of UVA radiation causes oxygen in melanocytes to damage DNA. Thus, oxidative DNA damage adversely affects transcription and DNA replication in melanocytes. The authors concluded that UVA-induced oxidative DNA damage in melanocytes and the inherently reduced repair capacity in these cells are the two key factors that contribute to melanoma on the skin.

The authors also discovered the underlying mechanism to explain why melanoma can also develop in areas never exposed to sunlight: Because melanocytes generally have a limited capacity to repair any DNA damage, they have a higher mutation frequency rate and are more susceptible to the development of melanoma—even without the effects of the sun.

"Melanoma, the deadliest form of skin cancer, continues to increase at a rate of 3 percent a year," says Dr. Tang. "This research highlights the necessity of limiting UVA radiation by avoiding excessive sunlight, tanning and sunbeds."

The study received funding from the National Institutes of Health in Bethesda, Maryland. It was published early online and will be appear in the print edition of the Proceedings of the National Academy of Sciences on July 6, 2010.

About NYU Langone Medical Center

NYU Langone Medical Center is one of the nation's premier centers of excellence in healthcare, biomedical research, and medical education. For over 170 years, NYU physicians and researchers have made countless contributions to the practice and science of health care. Today the Medical Center consists of NYU School of Medicine, including the Smilow Research Center, the Skirball Institute of Biomolecular Medicine, and the Sackler Institute of Graduate Biomedical Sciences; and the NYU Hospitals Center, including Tisch Hospital, a 705-bed acute-care general hospital, Rusk Institute of Rehabilitation Medicine, the first and largest facility of its kind, and NYU Hospital for Joint Diseases, a leader in musculoskeletal care, a Clinical Cancer Center and numerous ambulatory sites.

Lauren Woods | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Signaling Pathways to the Nucleus
19.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht In monogamous species, a compatible partner is more important than an ornamented one
19.03.2018 | Max-Planck-Institut für Ornithologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>