Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UTSA researchers create method that can quickly and accurately detect infections

12.06.2018

New method is quicker and more accurate than existing tests

A new study by Waldemar Gorski, professor and chair of the UTSA Department of Chemistry, and Stanton McHardy, associate professor of research in chemistry and director of the UTSA Center for Innovative Drug Discovery, describes a method that could show quickly and accurately whether a person has been infected with harmful bacteria or other pathogens. Additionally, this new method shows the exact severity of infection in a person.


New electrochemical method developed at UTSA to test the presence of a bacterial infection is faster and more accurate than methods currently on the market.

Photo courtesy of The University of Texas at San Antonio

The most common method of testing for infection in medical facilities is currently a strip that turns a certain color when infected fluids come into contact with it.

"The problem with this method is that it's imprecise," Gorski said. "The human eye is forced to judge the level of infection based on the hue and deepness of a color. It's difficult to make an accurate call based on that." Furthermore, roughly a third of samples cannot be tested because the fluids contain blood or are too opaque.

Other methods include microbiology or examining body fluid samples under a microscope and counting white blood cells, also known as leukocytes, which are an indicator of an infection. However, these can be slow processes and require more highly trained personnel.

Gorski, seeing a need for an easier and more rapid method of testing for infection, resolved to test an electrochemical approach, and sought out McHardy, a medicinal chemist. Together, they created molecules that bind to leukocyte enzymes and produce an electrical current to signal the presence of an infection.

Their new molecules are housed on a testing strip. After being contacted with infected bodily fluids, the strip is connected to a computer monitor that displays a clear range of electrochemical responses demonstrating the severity of an infection.

"The signs and symptoms people demonstrate aren't always reflective of the level of the infection they have," McHardy said. "This device could very easily show just how serious an infection is and make diagnosis a much quicker process, possibly preventing a more serious illness."

Gorski believes the method could be especially useful to people who have just undergone surgery, as it could determine definitively whether they have an infection from the procedure before it worsens.

To date, Gorski and McHardy have filed a patent for their invention, published two papers and plan to work with an engineer in the future to streamline its design.

###

Read Waldemar Gorski and Stanton McHardy's study, "Synthesis and Characterization of Pyridine Compounds for Amperometric Measurements of Leukocyte Esterase."

Learn more about the UTSA Department of Chemistry.

Learn more about the UTSA Center for Innovative Drug Discovery.

Media Contact

Christi Fish
christi.fish@utsa.edu
210-458-5141

 @utsa

http://www.utsa.edu 

Christi Fish | EurekAlert!
Further information:
http://www.utsa.edu/today/2018/06/story/McHardyGorskiStudy.html
http://dx.doi.org/10.1002/cbic.201800164

More articles from Life Sciences:

nachricht Researchers discover new type of stem cell state
12.06.2018 | American University

nachricht Making the oxygen we breathe, a photosynthesis mechanism exposed
12.06.2018 | Georgia Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

12th COMPAMED Spring Convention: Innovative manufacturing processes of modern implants

28.05.2018 | Event News

 
Latest News

Researchers discover new type of stem cell state

12.06.2018 | Life Sciences

Evidence for a new property of quantum matter revealed

12.06.2018 | Physics and Astronomy

Designing a better superconductor with geometric frustration

12.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>