Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UTHealth, BCM researchers find common gene variant associated with aortic dissection

12.09.2011
Multi-institutional study reveals risk factor that doubles chance of developing silent killer

Richard Holbrooke, John Ritter, Lucille Ball, Jonathan Larson and Great Britain's King George II were all taken by the same silent killer: an acute aortic dissection.

Now, scientists led by researchers at The University of Texas Health Science Center at Houston (UTHealth) and Baylor College of Medicine (BCM) have found an association with a common genetic variant in the population that predisposes people to acute dissections and can approximately double a person's chances of having the disease.

An aortic aneurysm is an enlargement or ballooning of the aorta in the segment where it comes out of the heart (thoracic aortic aneurysm). The natural history of a thoracic aortic aneurysm is to enlarge without symptoms over time, leading to instability of the aorta and ultimately an acute aortic dissection. The dissection is a tear in the aorta that allows blood to flow within its layers. It is a life-threatening event, with up to 40 percent of patients dying suddenly.

Although the average age of a person who suffers an aortic dissection is early 60s, the disease can strike at any age. Since the majority of individuals have an aortic aneurysm prior to dissection, identification of these aneurysms is critical since the aneurysm can be surgically repaired to prevent the aortic dissection, which typically occurs when the diameter of the aneurysm reaches twice that of the normal aorta. Therefore it is important to know who is at risk for this disorder.

The results of the research are published in the Sept. 11, 2011 advance online issue of Nature Genetics. Senior author is Dianna M. Milewicz, M.D., Ph.D., professor and the President George H.W. Bush Chair in Cardiovascular Research at The University of Texas Medical School at Houston, part of UTHealth.

"This is the first time we've found an association with a common genetic variant in the population that predisposes people to thoracic aortic aneurysms that cause acute aortic dissections. This variant in the DNA is on chromosome 15 (15q21.1) and involves a gene called FBN1. We already know that mutations in this gene cause Marfan syndrome, which is a genetic syndrome that strongly predisposes individuals to aortic dissections but also causes people to grow tall and have weak eyes," said Milewicz, who is also director of the Division of Medical Genetics at the UTHealth Medical School and heads the UTHealth John Ritter Research Program in Aortic and Vascular Diseases. "Although patients with aortic dissection in our study did not have Marfan syndrome, this study suggests that the same pathways are involved in causing aortic dissections in patients with and without Marfan syndrome."

Milewicz said the research has implications for using drugs to treat patients to prevent aortic aneurysms from even forming, such as losartan, which is now being tested in clinical trials for people with Marfan syndrome. "Whether they have Marfan or the common variant in FBN1, it may be the same pathway and we may be able to treat these patients the same way. That means that what we learn in treating patients with Marfan syndrome has implications for this larger group of individuals with thoracic aortic disease," she said.

"Over the past two decades, there has been remarkable progress in understanding the causes of aortic aneurysms and dissections in patients with inherited disorders, particularly Marfan syndrome. However, up to 80 percent of patients with thoracic aortic aneurysms and dissections do not have a known inherited cause, and the genetic factors that impact susceptibility to aortic disease in these patients are poorly understood," said the study's first author Scott A. LeMaire, M.D., professor of surgery and director of research in the Division of Cardiothoracic Surgery at BCM and surgeon at the Texas Heart Institute at St. Luke's Episcopal Hospital. "This gap in our understanding of 'sporadic' disease motivated us to conduct this study, which would not have been possible without the tremendous efforts of a large team of dedicated collaborators."

The study examined more than 1,300 patients who had sporadic thoracic aortic disease, meaning they did not have a known family genetic history or genetic syndrome associated with the disease. The patients came from the Memorial Hermann Heart & Vascular Institute, the Texas Heart Institute and Harvard Medical School, as well as from the National Institutes of Health GenTAC program, which includes the Perelman School of Medicine at the University of Pennsylvania, Johns Hopkins University School of Medicine, Weill Cornell Medical College of Cornell University and Oregon Health and Science University.

The discovery was made possible by a grant from the NIH that funded the Specialized Center for Clinically Oriented Research in Aortic Diseases, a multi-institutional collaboration in the Texas Medical Center. The title of the article is "Genome-wide association study identifies a susceptibility locus for thoracic aortic aneurysms and aortic dissections spanning FBN1 at 15q21.1." Merry-Lynn N. McDonald, Ph.D., at BCM; and Dong-chuan Guo, Ph.D., assistant professor of internal medicine at UTHealth, contributed equally along with LeMaire as co-first authors on the article.

Other UTHealth co-authors include Charles C. Miller, III, Ph.D., professor of cardiothoracic and vascular surgery; Ralph J. Johnson, Ph.D., assistant professor of internal medicine; Hazim Safi, M.D., professor and chair of the Department of Cardiothoracic and Vascular Surgery; and Anthony L. Estrera, M.D., professor of cardiothoracic and vascular surgery.

BCM co-investigators include Suzanne M. Leal, Ph.D., professor of molecular and human genetics; John W. Belmont, M.D., Ph.D., professor of molecular and human genetics; Ludivine Russell, M.S., cardiothoracic surgery research coordinator; Mir Reza Bekheirnia, M.D., clinical fellow in the Department of Molecular and Human Genetics; Luis M. Franco, M.D., assistant professor of molecular and human genetics; Mary Nguyen, B.S., cardiothoracic surgery laboratory technician; Molly Bray, Ph.D., associate professor of pediatrics; and Joseph S. Coselli, M.D., professor and chief of the Division of Cardiothoracic Surgery. Harvard Medical School co-investigators are Simon C. Body, M.B., Ch.B., M.P.H., associate professor of anesthesia; Christine Seidman, M.D., professor of genetics and medicine; Jonathan G. Seidman, Ph.D., professor of genetics; and Eric M. Isselbacher, M.D., associate professor medicine.

Other co-investigators are Reed E. Pyeritz, M.D., Ph.D., Perelman School of Medicine at the University of Pennsylvania; Joseph E. Bavaria, M.D., Perelman School of Medicine at the University of Pennsylvania; Richard Devereux, M.D., Weill Cornell Medical College; Cheryl Maslen, Ph.D., Oregon Health and Science University; Kathryn W. Holmes, Johns Hopkins University School of Medicine, M.D., M.P.H; and Kim Eagle, M.D., University of Michigan Medical School.

Media note: For requests to interview Dr. Milewicz, please contact Deborah Mann Lake, senior media relations specialist, UTHealth, 713-500-3304. For requests to interview Dr. LeMaire, please contact Gracie Gutierrez, senior communication specialist, Baylor College of Medicine, 713-798-4710.

Deborah Lake | EurekAlert!
Further information:
http://www.uth.tmc.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>