Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Uterine Cells Produce Their Own Estrogen During Pregnancy

21.07.2009
For decades, scientists assumed that the ovary alone produced steroid hormones during pregnancy. In a new study in mice, however, researchers demonstrate that once an embryo attaches to the uterine wall, the uterus itself actually synthesizes the estrogen needed to sustain the pregnancy.

This is the first time that the uterus has been identified as an endocrine organ, said University of Illinois veterinary biosciences professor Indrani Bagchi, who led the study with doctoral student Amrita Das. Their findings appear this week in the Proceedings of the National Academy of Science.

“It’s the local estrogen that’s critical in maintaining the growth of blood vessels within the uterus,” Das said. After an embryo implants, the researchers found, this locally produced estrogen acts in concert with progesterone secreted from the ovaries to spur the differentiation of uterine stromal cells, a process called decidualization, and promotes the growth of blood vessels that support the development of the embryo.

The researchers discovered that during decidualization, mouse uterine stromal cells increase their expression of P450 aromatase, a key enzyme that acts with other enzymes to convert androgens to estrogen.

Even in pregnant mice that have had their ovaries removed, the production of uterine estrogen is able to support the growth and differentiation of the tissue and blood vessels needed to sustain the pregnancy.

Progesterone supplementation is required, however, indicating that local estrogen alone is not sufficient to maintain pregnancy.

Blocking the activity of the aromatase with an inhibitor also blocked decidualization, the researchers found, another indication that a successful pregnancy relies on estrogen production in uterine cells.

There are advantages to producing the appropriate amount of estrogen right where it is needed, rather than relying on the ovaries, Bagchi said.

“During pregnancy, the ovaries would need to secrete a high level of estrogen to ensure that the right amount of estrogen is present in the uterus to support decidualization,” she said. “You can imagine that if the estrogen level goes high systemically, it could have a deleterious effect on pregnancy itself by antagonizing the progesterone action.”

The findings may also be helpful to the study of endometriosis, said molecular and integrative physiology professor Milan Bagchi, an author on the study. This disorder involves the growth of endometrial tissue, which is normally shed during menstruation, at sites outside the uterus, such as the peritoneal cavity and ovaries, producing painful lesions. Endometriosis is spurred, in part, by unusually high levels of estrogen secreted from endometrial tissue growing at these extrauterine sites, he said.

Except during pregnancy, “a normal cycling uterus does not make estrogen,” he said. High estrogen levels block the activity of progesterone and can cause the

non-cancerous growth of tissue seen in endometriosis.

This study was supported by the National Institutes of Health (NIH) and by the Eunice Kennedy Shriver National Institute of Child Health and Human Development at the NIH as part of the Specialized Cooperative Centers Program in Reproduction and Infertility Research.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

Further reports about: Bagchi Estrogen Health NIH Uterine blood vessel methanol fuel cells pregnancy

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>