Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern study to determine whether leptin helps type 1 diabetes patients

11.10.2010
A clinical trial at UT Southwestern Medical Center aims to determine whether adding the hormone leptin to standard insulin therapy might help rein in the tumultuous blood-sugar levels of people with type 1 (insulin-dependent) diabetes.

This is the first type 1 diabetes treatment trial involving leptin, which is naturally produced by fat cells and involved in body-weight regulation. For this study, UT Southwestern researchers will be using metreleptin, a slightly modified form of the hormone that has been well-tolerated in other clinical trials.

"Leptin has been very effective in improving diabetes in patients with lipodystrophies who have extreme lack of body fat, and recently leptin therapy has helped improve blood sugar control in animal models of type 1 diabetes," said Dr. Abhimanyu Garg, professor of internal medicine and principal investigator of the trial. "Although we have no assurances that this will work in humans, we hope that the addition of leptin will be beneficial to patients with type 1 diabetes."

The phase 1 study also is designed to evaluate the safety and tolerability of adding leptin to a diabetes treatment regimen.

In type 1 diabetes, formerly known as juvenile-onset diabetes, the pancreatic beta cells that produce insulin are destroyed by an autoimmune process. Type 1 diabetics must regiment their diets and take insulin multiple times a day to control blood-sugar levels and prevent diabetic coma. The autoimmune disease, for which there is no cure, affects about 1 million people in the U.S.

Insulin treatment has been the gold standard for type 1 diabetes since its discovery in 1922. The laboratory of Dr. Roger Unger, professor of internal medicine at UT Southwestern, previously found that insulin's benefit resulted from its suppression of glucagon, a hormone produced by the pancreas that raises blood-sugar levels in healthy individuals.

More recently, Dr. Unger's lab, using mouse models of type 1 diabetes, found that administering leptin instead of insulin resulted in better management of blood-sugar variability and lipogenesis, the conversion of simple sugars into fatty acids.

For the clinical study, 12 to 15 participants will add leptin twice a day to their standard insulin therapy over a five-month period. The trial will last a total of seven months and will include 11 visits – an initial screening, four inpatient visits and six outpatient evaluations – to UT Southwestern. The first inpatient visit will last a minimum of four days; the others will take two days each.

To be eligible for the initial screening, prospective trial participants must be between 18 and 50 years of age, have a body mass index (BMI) less than 25, and have been diagnosed with type 1 diabetes. BMI is a weight-to-height ratio commonly used in doctors' offices to gauge obesity. A normal BMI is between 18.5 and 25.

Dr. Gregory Clark, assistant professor of internal medicine and a trial investigator, said one incentive to take part in the trial is that participants might lose weight.

"Leptin is known to decrease appetite, so it's likely that participants won't be as hungry," he said. "We hope that the addition of leptin also reduces the blood levels of cholesterol, which increase the risk of coronary heart disease, one of the long-term complications of diabetes."

Dr. Unger emphasized that the goal is not to find a replacement for insulin, but to obtain stable glucose levels, something that has eluded monotherapy with insulin. The theory is that adding leptin might allow a substantial reduction in insulin dose and lower the risk of low blood glucose levels.

"If it works in humans as well as it does in rodents, it will be a major step forward," said Dr. Unger. "In rodents, it eliminated the wide swings in glucose that occur with insulin alone and lowered indices of cholesterol formation. The hope is that it will improve both short- and long-term quality of life for patients with type 1 diabetes."

Other UT Southwestern researchers involved in the trial include Dr. Pablo Mora, associate professor of internal medicine, and Dr. Zahid Ahmad, postdoctoral trainee in internal medicine.

For more information about the clinical trial, call 214-648-3621 or 214-648-9296.

Visit www.utsouthwestern.org/endocrinology to learn more about UT Southwestern's clinical services in endocrinology, including diabetes.

This news release is available on our World Wide Web home page at http://www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via e-mail, subscribe at www.utsouthwestern.edu/receivenews

Kristen Holland Shear | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>