Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern study to determine whether leptin helps type 1 diabetes patients

11.10.2010
A clinical trial at UT Southwestern Medical Center aims to determine whether adding the hormone leptin to standard insulin therapy might help rein in the tumultuous blood-sugar levels of people with type 1 (insulin-dependent) diabetes.

This is the first type 1 diabetes treatment trial involving leptin, which is naturally produced by fat cells and involved in body-weight regulation. For this study, UT Southwestern researchers will be using metreleptin, a slightly modified form of the hormone that has been well-tolerated in other clinical trials.

"Leptin has been very effective in improving diabetes in patients with lipodystrophies who have extreme lack of body fat, and recently leptin therapy has helped improve blood sugar control in animal models of type 1 diabetes," said Dr. Abhimanyu Garg, professor of internal medicine and principal investigator of the trial. "Although we have no assurances that this will work in humans, we hope that the addition of leptin will be beneficial to patients with type 1 diabetes."

The phase 1 study also is designed to evaluate the safety and tolerability of adding leptin to a diabetes treatment regimen.

In type 1 diabetes, formerly known as juvenile-onset diabetes, the pancreatic beta cells that produce insulin are destroyed by an autoimmune process. Type 1 diabetics must regiment their diets and take insulin multiple times a day to control blood-sugar levels and prevent diabetic coma. The autoimmune disease, for which there is no cure, affects about 1 million people in the U.S.

Insulin treatment has been the gold standard for type 1 diabetes since its discovery in 1922. The laboratory of Dr. Roger Unger, professor of internal medicine at UT Southwestern, previously found that insulin's benefit resulted from its suppression of glucagon, a hormone produced by the pancreas that raises blood-sugar levels in healthy individuals.

More recently, Dr. Unger's lab, using mouse models of type 1 diabetes, found that administering leptin instead of insulin resulted in better management of blood-sugar variability and lipogenesis, the conversion of simple sugars into fatty acids.

For the clinical study, 12 to 15 participants will add leptin twice a day to their standard insulin therapy over a five-month period. The trial will last a total of seven months and will include 11 visits – an initial screening, four inpatient visits and six outpatient evaluations – to UT Southwestern. The first inpatient visit will last a minimum of four days; the others will take two days each.

To be eligible for the initial screening, prospective trial participants must be between 18 and 50 years of age, have a body mass index (BMI) less than 25, and have been diagnosed with type 1 diabetes. BMI is a weight-to-height ratio commonly used in doctors' offices to gauge obesity. A normal BMI is between 18.5 and 25.

Dr. Gregory Clark, assistant professor of internal medicine and a trial investigator, said one incentive to take part in the trial is that participants might lose weight.

"Leptin is known to decrease appetite, so it's likely that participants won't be as hungry," he said. "We hope that the addition of leptin also reduces the blood levels of cholesterol, which increase the risk of coronary heart disease, one of the long-term complications of diabetes."

Dr. Unger emphasized that the goal is not to find a replacement for insulin, but to obtain stable glucose levels, something that has eluded monotherapy with insulin. The theory is that adding leptin might allow a substantial reduction in insulin dose and lower the risk of low blood glucose levels.

"If it works in humans as well as it does in rodents, it will be a major step forward," said Dr. Unger. "In rodents, it eliminated the wide swings in glucose that occur with insulin alone and lowered indices of cholesterol formation. The hope is that it will improve both short- and long-term quality of life for patients with type 1 diabetes."

Other UT Southwestern researchers involved in the trial include Dr. Pablo Mora, associate professor of internal medicine, and Dr. Zahid Ahmad, postdoctoral trainee in internal medicine.

For more information about the clinical trial, call 214-648-3621 or 214-648-9296.

Visit www.utsouthwestern.org/endocrinology to learn more about UT Southwestern's clinical services in endocrinology, including diabetes.

This news release is available on our World Wide Web home page at http://www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via e-mail, subscribe at www.utsouthwestern.edu/receivenews

Kristen Holland Shear | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>