Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern study to determine whether leptin helps type 1 diabetes patients

11.10.2010
A clinical trial at UT Southwestern Medical Center aims to determine whether adding the hormone leptin to standard insulin therapy might help rein in the tumultuous blood-sugar levels of people with type 1 (insulin-dependent) diabetes.

This is the first type 1 diabetes treatment trial involving leptin, which is naturally produced by fat cells and involved in body-weight regulation. For this study, UT Southwestern researchers will be using metreleptin, a slightly modified form of the hormone that has been well-tolerated in other clinical trials.

"Leptin has been very effective in improving diabetes in patients with lipodystrophies who have extreme lack of body fat, and recently leptin therapy has helped improve blood sugar control in animal models of type 1 diabetes," said Dr. Abhimanyu Garg, professor of internal medicine and principal investigator of the trial. "Although we have no assurances that this will work in humans, we hope that the addition of leptin will be beneficial to patients with type 1 diabetes."

The phase 1 study also is designed to evaluate the safety and tolerability of adding leptin to a diabetes treatment regimen.

In type 1 diabetes, formerly known as juvenile-onset diabetes, the pancreatic beta cells that produce insulin are destroyed by an autoimmune process. Type 1 diabetics must regiment their diets and take insulin multiple times a day to control blood-sugar levels and prevent diabetic coma. The autoimmune disease, for which there is no cure, affects about 1 million people in the U.S.

Insulin treatment has been the gold standard for type 1 diabetes since its discovery in 1922. The laboratory of Dr. Roger Unger, professor of internal medicine at UT Southwestern, previously found that insulin's benefit resulted from its suppression of glucagon, a hormone produced by the pancreas that raises blood-sugar levels in healthy individuals.

More recently, Dr. Unger's lab, using mouse models of type 1 diabetes, found that administering leptin instead of insulin resulted in better management of blood-sugar variability and lipogenesis, the conversion of simple sugars into fatty acids.

For the clinical study, 12 to 15 participants will add leptin twice a day to their standard insulin therapy over a five-month period. The trial will last a total of seven months and will include 11 visits – an initial screening, four inpatient visits and six outpatient evaluations – to UT Southwestern. The first inpatient visit will last a minimum of four days; the others will take two days each.

To be eligible for the initial screening, prospective trial participants must be between 18 and 50 years of age, have a body mass index (BMI) less than 25, and have been diagnosed with type 1 diabetes. BMI is a weight-to-height ratio commonly used in doctors' offices to gauge obesity. A normal BMI is between 18.5 and 25.

Dr. Gregory Clark, assistant professor of internal medicine and a trial investigator, said one incentive to take part in the trial is that participants might lose weight.

"Leptin is known to decrease appetite, so it's likely that participants won't be as hungry," he said. "We hope that the addition of leptin also reduces the blood levels of cholesterol, which increase the risk of coronary heart disease, one of the long-term complications of diabetes."

Dr. Unger emphasized that the goal is not to find a replacement for insulin, but to obtain stable glucose levels, something that has eluded monotherapy with insulin. The theory is that adding leptin might allow a substantial reduction in insulin dose and lower the risk of low blood glucose levels.

"If it works in humans as well as it does in rodents, it will be a major step forward," said Dr. Unger. "In rodents, it eliminated the wide swings in glucose that occur with insulin alone and lowered indices of cholesterol formation. The hope is that it will improve both short- and long-term quality of life for patients with type 1 diabetes."

Other UT Southwestern researchers involved in the trial include Dr. Pablo Mora, associate professor of internal medicine, and Dr. Zahid Ahmad, postdoctoral trainee in internal medicine.

For more information about the clinical trial, call 214-648-3621 or 214-648-9296.

Visit www.utsouthwestern.org/endocrinology to learn more about UT Southwestern's clinical services in endocrinology, including diabetes.

This news release is available on our World Wide Web home page at http://www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via e-mail, subscribe at www.utsouthwestern.edu/receivenews

Kristen Holland Shear | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>