Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern researchers uncover culprits in life-threatening clotting disorder

06.12.2010
Thanks to findings by UT Southwestern Medical Center researchers, individuals with a potentially life-threatening condition predisposing them to blood clots, or thrombosis, might someday receive therapy to prevent the condition.

The findings, available online and in a future issue of The Journal of Clinical Investigation, offer new clues into the mechanisms underlying antiphospholipid syndrome (APS).

"Patients with APS have circulating antibodies that cause exaggerated thrombosis. The longstanding mystery has been how these antibodies initiate the clotting," said Dr. Philip Shaul, professor of pediatrics and senior co-author of the study.

For the study, the researchers first examined the direct actions of APS antibodies on cultured endothelial cells, which line the inside of blood vessels.

They discovered that the thrombosis-inducing antibodies recognize a protein called Beta2-Glycoprotein I on the endothelial cell surface that then interacts with a second protein, apolipoprotein E receptor 2 (apoER2). ApoER2 ultimately inactivates the enzyme that produces the antithrombotic molecule nitric oxide. The decrease in nitric oxide causes both white blood cells and platelets to bind to the endothelium, initiating the thrombosis.

Dr. Shaul said the findings are quite promising because they identify the series of molecular events responsible for the exaggerated thrombosis.

The study also found that in contrast to normal mice, mice genetically engineered to lack apoER2 are completely protected from developing thrombosis when they are given APS antibodies collected from individuals with the syndrome.

"Patients with thrombosis often require lifelong anti-coagulation therapy," he said. "The problem with this approach is that the anti-coagulation can be ineffective, and there are multiple potential serious complications related to bleeding. It makes much more sense to develop new therapies that target the underlying disease mechanism."

Dr. Chieko Mineo, assistant professor of pediatrics and senior co-author of the study, said the findings are particularly important for pregnant women with APS because they are at high risk of miscarriage and preterm birth.

"Even if a woman with APS does carry to term, the infant is often smaller than normal and can suffer from multiple complications," Dr. Mineo said. "Our ongoing studies indicate that the mechanisms we have identified that provoke thrombosis are also operative in APS during pregnancy to adversely affect the health of both the mother and the fetus."

The next step, Dr. Shaul said, is to test in the mouse models three novel therapeutic interventions that are based on the new understanding of APS.

"If they prevent thrombosis or pregnancy complications in the mouse models, clinical trials would of course follow," Dr. Shaul said.

Other UT Southwestern researchers involved in the study include lead author Dr. Sangeetha Ramesh, former graduate research assistant in pediatrics; Dr. Cristina Tarango, former postdoctoral fellow in pediatric hematology/oncology; Ivan Yuhanna, senior research associate in pediatrics; Dr. Joachim Herz, professor of molecular genetics and neuroscience; Dr. Philip Thorpe, professor of pharmacology; and Dr. Gail Thomas, former associate professor of internal medicine. Researchers from the University of Rochester School of Medicine and Dentistry, Weill Cornell Medical College and University Medical Center Utrecht in the Netherlands also participated.

The study was supported by the National Institutes of Health, the Alliance for Lupus Research, The Lowe Foundation, the Crystal Charity Ball Center for Pediatric Critical Care Research, and the Robert L. Moore Endowment from Children's Medical Center Foundation.

Visit http://www.utsouthwestern.org/pediatrics to learn more about clinical services in pediatrics at UT Southwestern.

This news release is available on our World Wide Web home page at http://www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via e-mail, subscribe at www.utsouthwestern.edu/receivenews

Kristen Holland Shear | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>