Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern researchers probe mechanisms of infection

10.03.2009
A newly discovered receptor in a strain of Escherichia coli might help explain why people often get sicker when they're stressed.

Researchers at UT Southwestern Medical Center are the first to identify the receptor, known as QseE, which resides in a diarrhea-causing strain of E coli.

The receptor senses stress cues from the bacterium's host and helps the pathogen make the host ill. A receptor is a molecule on the surface of a cell that docks with other molecules, often signaling the cell to carry out a specific function.

The study is available online and in a future issue of the Proceedings of the National Academy of Sciences. Dr. Vanessa Sperandio, associate professor of microbiology at UT Southwestern and the study's senior author, said QseE is an important player in disease development because the stress cues it senses from a host, chiefly epinephrine and phosphate, are generally associated with blood poisoning, or sepsis.

"Patients with high levels of phosphate in the intestine have a much higher probability of developing sepsis due to systemic infection by intestinal bacteria," Dr. Sperandio said. "If we can find out how bacteria sense these cues, then we can try to interfere in the process and prevent infection."

Millions of potentially harmful bacteria exist in the human body, awaiting a signal from their host that it's time to release their toxins. Without those signals, the bacteria pass through the digestive tract without infecting cells. What hasn't been identified is how to prevent the release of those toxins.

"There's obviously a lot of chemical signaling between host and bacteria going on, and we have very little information about which bacteria receptors recognize the host and vice versa," Dr. Sperandio said. "We're scratching at the tip of the iceberg on our knowledge of this."

In 2006, Dr. Sperandio's lab was the first to identify the receptor QseC sensor kinase, a molecule found in the membrane of a diarrhea-causing strain of E coli known as enterohemorrhagic Escherichia coli, or EHEC. Prior research by Dr. Sperandio found that when a person ingests EHEC – which is usually transmitted through contaminated food such as raw meat – it travels peacefully through the digestive tract until reaching the intestine. There, chemicals produced by the friendly gastrointestinal microbial flora and the human hormones epinephrine and norepinephrine alert the bacteria to its location.

Once QseC recognizes the stress hormones, it initiates a cascade of genetic activations in which EHEC colonizes the intestine and moves toxins into human cells, altering the makeup of the cells and robbing the body of nutrients.

"The bacteria get what they want – nourishment – and the person ends up getting diarrhea," Dr. Sperandio said.

The new study identifies QseE, a receptor only found in intestinal bacteria, as the receptor that ends this QseC-initiated cascade. It also provides the timing for the bacterium's actions, including the regulation of the genes necessary for EHEC to cause diarrhea.

"EHEC needs both receptors to be fully virulent and express its toxins," Dr. Sperandio said. "When people are stressed they have more epinephrine and norepinephrine being released. Both of these human hormones activate the receptors QseC and QseE, which in turn trigger virulence. Hence, if you are stressed, you activate bacterial virulence."

Dr. Sperandio said the findings also suggest that there may be more going on at the genetic level in stress-induced illness than previously thought.

"The problem may not only be that the stress signals are weakening your immune system, but that you're also priming some pathogens at the same time," she said. "Then it's a double-edged sword. You have a weakened immune system and pathogens exploiting it."

Previous research by Dr. Sperandio found that phentolamine, an alpha blocker drug used to treat hypertension, and a new drug called LED209 prevent QseC from expressing its virulence genes in cells.

The next step is to test whether phentolamine has the same effect on QseE.

Kristen Holland Shear | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
21.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
21.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>