Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UT Southwestern research uncovers genetic link between emphysema, lung cancer

A gene linked to emphysema also can be a factor for developing lung cancer unrelated to cigarette smoking, UT Southwestern Medical Center research indicates. Smoking was the only known risk factor previously associated with both diseases.

In the study, mice bred to have the human gene pleiomorphic adenoma gene-like 2 (PLAGL2) all developed emphysema, and by gender also developed lung cancer at rates as high as one in every six rodents. Although the new study showed PLAGL2 as a contributing factor in emphysema and lung cancer development, the diseases form in opposite ways. Emphysema arises from cell death or injury, while lung cancer involves uncontrolled cell growth.

"We think this gene induces emphysema by causing stem cells in the lung to die," said Dr. Jonathan Weissler, vice chairman of the department of medicine and chief of medicine at UT Southwestern University Hospital and senior author of the study, available online and due to be published in the journal Lung Cancer in October. "The cells that don't die through apoptosis would be more likely to have uncontrolled growth" and become cancerous, suggesting a genetic link between the diseases.

The gene is a known driver of several types of cancer. The degree to which PLAGL2 turns on, or is expressed, plays a role in cancer development. Previous research has demonstrated that female lung cancer patients with higher levels of gene expression had much poorer survival rates.

Increased PLAGL2 expression also aggravates emphysema. In 2009, Dr. Weissler and UT Southwestern colleagues found that high expression of this gene led to enlarged airways (alveoli) in mice. Female mice in particular were more prone to develop emphysema.

"The mice in that study developed the same type of emphysema seen in smokers despite the fact they were not exposed to cigarette smoke," said Dr. Weissler, director of the James M. Collins Center for Biomedical Research.

The new study revealed higher incidence of lung cancer in male mice. Of two PLAGL2 mice groups tested, lung cancer developed in 12.5 percent and 18.5 percent of male mice. The rate for female mice was zero and 3.7 percent.

In human cases, the association between these two diseases also is stronger in men. One study showed that about 10 percent of patients with severe emphysema – all men – also had lung cancer. The reasons for these gender differences are as yet unknown, although this information eventually could be used to help identify patients at risk for cancer.

"PLAGL2 expression could be used as a marker for cells that are at risk of undergoing malignant transformation," Dr. Weissler said.

Other researchers involved in the study were lead authors Dr. Yih-Sheng Yang and Dr. Meng-Chun Yang, both former assistant professors of internal medicine at UT Southwestern.

The study was supported by the National Heart, Lung and Blood Institute, the Will Rogers Institute and the Collins Center for Biomedical Research.

Visit to learn more about UT Southwestern's clinical services in cancer.

This news release is available on our World Wide Web home page at

To automatically receive news releases from UT Southwestern via email, subscribe at

Debbie Bolles | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>