Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT researchers crack code to harmful brown tides

24.02.2011
Researchers conduct first-ever genetic sequencing of harmful algal blooms

A team involving University of Tennessee, Knoxville, researchers has conducted the first-ever genetic sequencing of a harmful algal bloom (HAB) species, cracking the genome of the micro-organism responsible for the Eastern Seaboard's notorious brown tides.

Brown tides decimated the scallop industries of New York and New Jersey in the 1980s and 1990s and continue to plague the waters off North America and South Africa. The tides are not poisonous to humans, but the chronic blooms are toxic to marine life and block sunlight from reaching undersea vegetation, reducing the food available to fish and shellfish. Indeed, they have decimated sea grass beds and shellfisheries leading to billions of dollars in economic losses.

Steven Wilhelm, microbiology professor; Gary LeCleir, research associate in microbiology; Nathan VerBerkmoes, adjunct assistant professor of microbiology at UT Knoxville and Oak Ridge National Laboratory; and Manesh Shah, senior research associate at the School of Genome Science and Technology, in collaboration with other researchers were able to solve the mystery as to why HABs continue to bloom when there are so many other competing species in the water with them.

Their findings are published in the current online edition of the Proceedings of the National Academy of Sciences.

The researchers discovered that the algae's unique genetic structure allows them to thrive in polluted ecosystems, providing clues to why certain species have experienced explosive growth in water around the globe in recent decades.

They found there are certain functions HABs can perform that other algae cannot. For instance, they are able to survive for long periods in no light. They are able to metabolize in organic matter and handle what would normally be toxic amounts of metals like copper. The HABs also have a larger number of selenoproteins, which use the trace element selenium to perform essential cell functions illustrating a concordance between the genome and the ecosystem where it's blooming. The takeaway is that the organism thrives in human-impacted conditions.

"We now know that this organism is genetically predisposed to exploit certain characteristics of coastal ecosystems," said the authors. "But we also know the characteristics are there because of activities of man. If we continue to increase, for example, organic matter in coastal waters, then it's going to continue to favor brown tides since it's genetically predisposed to thrive in these conditions."

The research team was led by Christopher Gobler of Stony Brook University's School of Marine and Atmospheric Sciences. Brian Dill, a postdoctoral fellow from Oak Ridge National Laboratory, along with scientists from the Woods Hole Oceanographic Institution, Brigham and Women's Hospital, Harvard Medical School, Rutgers University, Macquarie University, University of Delaware, Stanford University and Massachusetts Institute of Technology also contributed to this study.

Funding for the research was provided by New York Sea Grant, U.S. Department of Energy, National Oceanic and Atmospheric Administration, National Institutes of Health and National Science Foundation.

Whitney Holmes | EurekAlert!
Further information:
http://www.utk.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

OLED production facility from a single source

29.03.2017 | Trade Fair News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>