Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT researchers crack code to harmful brown tides

24.02.2011
Researchers conduct first-ever genetic sequencing of harmful algal blooms

A team involving University of Tennessee, Knoxville, researchers has conducted the first-ever genetic sequencing of a harmful algal bloom (HAB) species, cracking the genome of the micro-organism responsible for the Eastern Seaboard's notorious brown tides.

Brown tides decimated the scallop industries of New York and New Jersey in the 1980s and 1990s and continue to plague the waters off North America and South Africa. The tides are not poisonous to humans, but the chronic blooms are toxic to marine life and block sunlight from reaching undersea vegetation, reducing the food available to fish and shellfish. Indeed, they have decimated sea grass beds and shellfisheries leading to billions of dollars in economic losses.

Steven Wilhelm, microbiology professor; Gary LeCleir, research associate in microbiology; Nathan VerBerkmoes, adjunct assistant professor of microbiology at UT Knoxville and Oak Ridge National Laboratory; and Manesh Shah, senior research associate at the School of Genome Science and Technology, in collaboration with other researchers were able to solve the mystery as to why HABs continue to bloom when there are so many other competing species in the water with them.

Their findings are published in the current online edition of the Proceedings of the National Academy of Sciences.

The researchers discovered that the algae's unique genetic structure allows them to thrive in polluted ecosystems, providing clues to why certain species have experienced explosive growth in water around the globe in recent decades.

They found there are certain functions HABs can perform that other algae cannot. For instance, they are able to survive for long periods in no light. They are able to metabolize in organic matter and handle what would normally be toxic amounts of metals like copper. The HABs also have a larger number of selenoproteins, which use the trace element selenium to perform essential cell functions illustrating a concordance between the genome and the ecosystem where it's blooming. The takeaway is that the organism thrives in human-impacted conditions.

"We now know that this organism is genetically predisposed to exploit certain characteristics of coastal ecosystems," said the authors. "But we also know the characteristics are there because of activities of man. If we continue to increase, for example, organic matter in coastal waters, then it's going to continue to favor brown tides since it's genetically predisposed to thrive in these conditions."

The research team was led by Christopher Gobler of Stony Brook University's School of Marine and Atmospheric Sciences. Brian Dill, a postdoctoral fellow from Oak Ridge National Laboratory, along with scientists from the Woods Hole Oceanographic Institution, Brigham and Women's Hospital, Harvard Medical School, Rutgers University, Macquarie University, University of Delaware, Stanford University and Massachusetts Institute of Technology also contributed to this study.

Funding for the research was provided by New York Sea Grant, U.S. Department of Energy, National Oceanic and Atmospheric Administration, National Institutes of Health and National Science Foundation.

Whitney Holmes | EurekAlert!
Further information:
http://www.utk.edu

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>