Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT professor uncovers clues into how viruses jump from hosts

06.08.2010
Researcher finds that cross-species transmission may have less to do with virus mutation and contact rates and more to do with host similarity

HIV-AIDS. SARS. Ebola. Bird Flu. Swine Flu. Rabies. These are emerging infectious diseases where the viruses have jumped from one animal species into another and now infect humans. This is a phenomenon known as cross-species transmission (CST) and scientists are working to determine what drives it. Gary McCracken, a professor at the University of Tennessee, Knoxville, and department head in Ecology and Evolutionary Biology, is one of those scientists and has made a groundbreaking discovery into how viruses jump from host to host.

His article, "Host Phylogeny Constrains Cross-Species Emergence and Establishments of Rabies Virus in Bats," will appear in the Aug. 6 edition of Science and will be featured on the issue's cover.

It has been a long-held belief that rapid mutation is the main factor that allows viruses to overcome host-specific barriers in cellular, molecular or immunological defenses. Therefore, it has been argued that viruses emerge primarily between species with high contact rates.

McCracken and his colleagues now report that CST may have less to do with virus mutation and contact rates and more to do with host similarity.

"That innate similarity in the defenses of closely related species may favor virus exchange by making it easier for natural selection to favor a virus' ability to infect new hosts," McCracken explained.

McCracken performed his research with former UT Knoxville Ph.D. student Amy Turmelle who now works with the Centers for Disease Control (CDC) and Maarten J. Vonhof, a former post-doctoral scholar at UT Knoxville, who is now with Western Michigan University. Other colleagues include CDC Rabies Team Members Ivan Kuzmin, Charles Rupprecht and Daniel Streicker, who is also with the University of Georgia.

The team made their discovery by analyzing hundreds of rabies viruses in 23 species of bats. In the United States, there are at least 45 different species of bats and many different strains of rabies. Not coincidentally, the CDC collects rabid bats after humans or their pets or livestock may have been exposed to the virus -- adding nearly 2,000 bats annually to its database. McCracken and his colleagues used this database to document the cases in which a rabies virus jumped from one species of bat to another. They verified the cases by genotyping both the viruses and the bats.

The researchers documented over 200 examples of CSTs and analyzed the best explanations for CSTs, such as geographic range, behavior, ecology and genetic relatedness. The study found that the majority of viruses from cross-species infections were tightly nested among genetically similar bat species.

"It turns out, the most important factor in cross-species transmission is how closely related the bat species are," McCracken said. "Our study demonstrates that rapid evolution can be insufficient to overcome phylogenetic barriers at two crucial stages of viral emergence: initial infection and sustained transmission."

This discovery may have significant implications for public health authorities as they try to track where the next infectious disease will emerge. The team's research provides a model for how such diseases transfer from host to host.

"Although CST events are the source of infectious diseases that kill millions of people each year, the natural reservoirs of viruses in wild animals and how they cross species barriers are poorly known and difficult to observe. In this study, rabies in bats serves as a model to understand events that are critical to public health concerns worldwide," McCracken said.

Whitney Holmes | EurekAlert!
Further information:
http://www.utk.edu

Further reports about: CDC CST Ebola Flu Outbreak HIV-AIDS SARS Swine flu evolutionary biology infectious disease rabies

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>