Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Arlington research may unlock enzyme’s role in disease

03.01.2014
A UT Arlington chemist doing National Science Foundation-funded research on enzymes that regulate human biology has uncovered characteristics that could be used to identify predisposition to conditions such as heart disease, diabetic ulcers and some types of cancer.

Brad Pierce, an assistant professor of chemistry/biochemistry at The University of Texas at Arlington, recently led a team that examined an oxygen utilizing iron enzyme called cysteine dioxygenase or CDO, which is found in high levels within heart, liver, and brain tissues.


First and Second coordination spheres of the CDO active site.

Enzymes are proteins that act as catalysts to enable metabolic functions, but under some circumstances these oxygen-dependent enzymes can also produce highly toxic side products called reactive oxygen species or ROS.

For the first time, Pierce’s team found that mutations outside the CDO active site environment or “outer coordination sphere” have a profound influence on the release of ROS. Excess ROS has been linked to numerous age-onset human disease states.

“Most research in the past has focused on the active site inner coordination sphere of these enzymes, where the metal molecule is located,” said Pierce. “What we’re finding is that it’s really the second sphere that regulates the efficiency of the enzyme. In essence, these interactions hold everything together during catalysis. When this process breaks down, the enzyme ends up spitting out high levels of ROS and increasing the likelihood of disease.”

The study was published in December by the American Chemical Society journal Biochemistry. Pierce is corresponding author on the paper, with UT Arlington students Wei Li, Michael D. Pecore and Joshua K. Crowell as co-authors. Co-author Elizabeth J. Blaesi is a graduate research assistant at the University of Wisconsin.

Pierce believes the findings from the CDO enzyme could be applied to other oxygen-dependent enzymes, which make up about 20 percent of the enzymes in the human body.

“In principle, these findings could be extended to better understand how other enzymes within the class generate ROS and potentially be used to screen for genetic dispositions for ROS-related diseases,” he said.

Pierce’s research brings a new level of detail to enzyme study through the use of electron paramagnetic resonance or EPR, a technology similar to the magnetic resonance imaging or MRI used in the medical field. In fall 2012, the National Science Foundation awarded Pierce a three-year, $300,000 grant to study enzymes that are catalysts for the oxidation of sulfur-bearing molecules in the body.

“Dr. Pierce’s research is a good example of how basic science can set a path toward discoveries that affect human health. We look forward to his continued exploration of these findings,” said Pamela Jansma, dean of the UT Arlington College of Science.

The title of the Biochemistry paper is “Second-Sphere Interactions between the C93-Y157 Cross-Link and the Substrate-Bound Fe Site Influence the O2 Coupling Efficiency in Mouse Cysteine Dioxygenase.” It is available online here: http://www.ncbi.nlm.nih.gov/pubmed/24279989.

The University of Texas at Arlington is a comprehensive research institution of more than 33,300 students and 2,300 faculty members in the epicenter of North Texas. It is the second largest institution in The University of Texas System. Total research expenditures reached almost $78 million last year. Visit www.uta.edu to learn more.

The University of Texas at Arlington is an Equal Opportunity and Affirmative Action employer.
Media Contact: Traci Peterson, Office:817-272-9208,
Cell:817-521-5494, tpeterso@uta.edu

Traci Peterson | EurekAlert!
Further information:
http://www.uta.edu
http://www.uta.edu/news/releases/2013/12/bradpierce-paper.php

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>