Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

USU Discovery Leads to Development of Vaccine to Help Prevent Deadly Virus

07.11.2012
A scientific discovery made in the laboratory of Christopher C. Broder, Ph.D., professor of microbiology and immunology at the Uniformed Services University of the Health Sciences (USU), has led to the development of a vaccine to aid in the prevention of the deadly Hendra virus. On Nov. 1, Pfizer Animal Health announced that the new vaccine, called Equivac® HeV, is now available for use in Australia.

Since its first appearance in 1994, the Hendra virus has killed more than 80 horses and four of the seven people infected to date. An equine vaccine is crucial to breaking the cycle of Hendra virus transmission from flying foxes to horses and then to people, as it helps to prevent the horse from both developing the disease and transmitting the virus to other horses and people. Experiments have shown that vaccinated horses survived infection by Hendra virus and have shown no evidence of virus, disease, replication or shedding of the virus, a critical finding to help prevent transmission.

The vaccine is derived from original work by Broder and Katharine Bossart, Ph.D., a USU alumna and assistant professor at Boston University School of Medicine. Their work was supported by the National Institute of Allergy and Infectious Disease (NIAID), part of the National Institutes of Health.

“The vaccine component is a soluble portion of a Hendra virus G glycoprotein, known as Hendra-sG,” said Broder. Bossart developed Hendra-sG while a graduate student in Broder’s laboratory at USU. “This glycoprotein is critical in mediating viral infection. If you block its function, you block virus infection. We have shown it to be highly effective in preventing Hendra virus and the related Nipah virus infection when it is used as a vaccine in animals. Vaccinated animals make antibodies to Hendra G, and these antibodies will subsequently prevent virus infection.”

To date, Hendra virus has been found only in Australia. The nation experienced an unprecedented number of 18 outbreaks across Queensland and New South Wales in 2011, during which 22 horses died or were euthanized. Authorities detected the first case of Hendra virus antibodies in a dog within a natural environment that same year. The virus has appeared seven times in 2012, causing equine deaths and serious cases of human exposure to infection. In July 2012, a woman with significant exposure risk was given an experimental human monoclonal antibody therapy on a compassionate use basis. Dimitar Dimitrov, Ph.D., of the NIH, working in collaboration with Broder, developed the antibody, known as m102.4.

The Hendra virus, and the similar Nipah virus, both members of the paramyxovirus family, are highly infectious agents that emerged from flying foxes in the 1990s to cause serious disease outbreaks in humans and livestock in Australia, Bangladesh, India, Malaysia and Singapore. Recent Nipah outbreaks have resulted in acute respiratory distress syndrome and encephalitis, person-to-person transmission, and greater than 75 percent case fatality rates among humans. A collaborative group led by Broder published its groundbreaking Hendra and Nipah virus work in two articles in Science Translational Medicine, including the Aug. 2011 article that describes the Hendra-sG vaccine’s ability to completely protect nonhuman primates from Nipah virus infection, paving the way for a potential human-use vaccine, and the Oct. 2011 article that describes a breakthrough in the development of an effective therapy against both viruses now in development for use in humans.

Broder and Bossart collaborated with a team at the Commonwealth Scientific and Industrial Research Organisation’s (CSIRO) Australian Animal Health Laboratory (AAHL) in Geelong, Australia, to advance the Hendra vaccine technology. The bio-security facility at AAHL is the only laboratory in the world where Hendra virus challenge testing of the vaccine in horses could have been accomplished -- work presently under the direction of Deborah Middleton, D.V.P. The technology used to develop the vaccine was licensed from The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. (HJF) by Pfizer Animal Health, who joined the collaborative effort two years ago, bringing its development and regulatory expertise to facilitate the unprecedented rapid development, approval and deployment of the breakthrough vaccine.

The recent work to develop and evaluate the Hendra vaccine was jointly funded by CSIRO; Pfizer Animal Health; the Australian government through its Department of Agriculture, Fisheries and Forestry; and the Queensland government through its Department of Employment, Economic Development and Innovation. NIAID provided funding to support production of the vaccine component in the U.S.

About USU
The Uniformed Services University of the Health Sciences (USU) is the nation’s federal health sciences university. USU students are primarily active duty uniformed officers in the Army, Navy, Air Force and Public Health Service who have received specialized education in tropical and infectious diseases, preventive medicine, TBI and PTSD, disaster response and humanitarian assistance, and acute trauma care. A large percentage of the university’s nearly 5,000 physician and 600 advanced practice nursing alumni are supporting operations around the world, offering their leadership and expertise. The University also has graduate programs in biomedical sciences and public health, most open to civilian and military applicants, and oral biology, committed to excellence in research which have awarded more than 400 doctoral and 900 masters degrees to date. For more information about USU and its programs, visit www.usuhs.mil.

Sharon Willis | Newswise Science News
Further information:
http://www.usuhs.mil

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>