Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using nature as a model for low-friction bearings

14.05.2014

Lubricants are required wherever moving parts come together.

They prevent direct contact between solid elements and ensure that gears, bearings, and valves work as smoothly as possible. Depending on the application, the ideal lubricant must meet conflicting requirements. On the one hand, it should be as thin as possible because this reduces friction.


Thanks to biological lubrication natural joints move almost frictionless and withstand enormous loads.

Credit: Tom Page (https://www.flickr.com/photos/tompagenet/6957645328, https://creativecommons.org/licenses/by-sa/2.0/deed.en)

On the other hand, it should be viscous enough that the lubricant stays in the contact gap. In practice, grease and oils are often used because their viscosity increases with pressure.

Biological lubrication in contrast is much more efficient. In joints, a thin, watery solution prevents friction. The thin film stays where it should thanks to a trick of nature. A polymer layer is anchored to the cartilage at the end of bones. Polymers are a string of densely packed, long-chain molecules.

They protrude from the cartilage and form "polymer brushes" which attract the extremely fluid lubricant and keep it in place at the contact point.

Over the last 20 years, numerous attempts have been made to imitate the natural model technically. But with no resounding success. The tentacle-like polymers on surfaces opposite each other tend to get tangled up in each other.

They slow each other down and detach from the surfaces. In technical systems, individual polymers that become detached are difficult to replace as they do not possess the same self-healing mechanisms as in a natural organism.

Jülich physicist Prof. Martin Müser came up with the idea of using two different polymers at the contact point to prevent the polymers becoming entangled. "Using supercomputers, we simulated what would happen if we applied water-soluble polymers to one side and water-repellent polymers to the other side," says head of the NIC (John von Neumann Institute for Computing) group Computational Materials Physics at the Jülich Supercomputing Centre (JSC)."

This combination of water-based and oil-based liquids as a lubricant reduced the friction by two orders of magnitude – around a factor of 90 – compared to a system comprising just one type of polymer."

Measurements with an atomic force microscope at the University of Twente in the Netherlands verified the results. "The two different phases of the liquid separate because they repel each other. This simultaneously holds the polymers back and prevents them from protruding beyond the borders," says Dr. Sissi de Beer, who recently moved from Müser's group to the University of Twente.

The low-friction two-component lubricant is interesting for numerous applications. One example are simple piston systems, like syringes, which are used to precisely administer even tiny amounts of a drug.

Above all, the new process could provide low-friction solutions where high pressures and forces occur locally – for example, axle bearings and hinges. For the most common lubricant – engine oil – an alternative has yet to be found; conventional polymer brushes are unable to withstand the high temperatures.

Tobias Schlößer | Eurek Alert!
Further information:
http://www.fz-juelich.de/portal/DE/Presse/Pressemitteilungen/PM_node.html

Further reports about: Polymers cartilage factor friction liquids lubricant organism pressure surfaces valves

More articles from Life Sciences:

nachricht Faster detection of pathogens in the lungs
24.06.2016 | Universität Zürich

nachricht How yeast cells regulate their fat balance
23.06.2016 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First experimental quantum simulation of particle physics phenomena

Physicists in Innsbruck have realized the first quantum simulation of lattice gauge theories, building a bridge between high-energy theory and atomic physics. In the journal Nature, Rainer Blatt‘s and Peter Zoller’s research teams describe how they simulated the creation of elementary particle pairs out of the vacuum by using a quantum computer.

Elementary particles are the fundamental buildings blocks of matter, and their properties are described by the Standard Model of particle physics. The...

Im Focus: Is There Life On Mars?

Survivalist back from Space - 18 months on the outer skin of the ISS

A year and a half on the outer wall of the International Space Station ISS in altitude of 400 kilometers is a real challenge. Whether a primordial bacterium...

Im Focus: CWRU physicists deploy magnetic vortex to control electron spin

Potential technology for quantum computing, keener sensors

Researchers at Case Western Reserve University have developed a way to swiftly and precisely control electron spins at room temperature.

Im Focus: Physicists measured something new in the radioactive decay of neutrons

The experiment inspired theorists; future ones could reveal new physics

A physics experiment performed at the National Institute of Standards and Technology (NIST) has enhanced scientists' understanding of how free neutrons decay...

Im Focus: Discovery of gold nanocluster 'double' hints at other shape changing particles

New analysis approach brings two unique atomic structures into focus

Chemically the same, graphite and diamonds are as physically distinct as two minerals can be, one opaque and soft, the other translucent and hard. What makes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

 
Latest News

Nanoscientists develop the 'ultimate discovery tool'

24.06.2016 | Materials Sciences

Russian physicists create a high-precision 'quantum ruler'

24.06.2016 | Physics and Astronomy

Hubble confirms new dark spot on Neptune

24.06.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>