Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using fungi to catch algae

19.02.2015

Fungal waste biomass from biotechnology applications could be used to harvest microalgae for fuels and chemicals production

Waste biomass from fungal fermentation processes could be used to bind to and harvest microalgae being used in other biotechnology applications. A*STAR researchers have successfully demonstrated this procedure with fungal mycelium — the main vegetative part of a fungus such as the tangled mass of underground fibers beneath sprouting mushrooms.


Mixing a fungal culture with microalgae culture followed by aerated mixing can precipitate the algae bound to the fungal mycelium. This allows extraction of useful microalgae/fungal biomass for direct use or further purification of algal products. © 2015 A*STAR Institute of Chemical Engineering Sciences

Suitable fungal biomass might be obtained cheaply or perhaps even freely to offer a sustainable and environmentally sound method for harvesting microalgae. The potential uses of microalgae include burning their biomass as fuel or turning them into mini-factories for making biodiesel or specific chemicals including lipids, sugars or drugs.

"The lack of an economic and effective method for harvesting microalgae is one of the bottlenecks limiting their commercial use in biotechnology," explains Mahabubur Talukder of the A*STAR Institute of Chemical and Engineering Sciences.

Microalgae can be cultured in a broth and existing methods for harvesting them include centrifugation or a precipitation process called flocculation using chemical treatments. All current methods however suffer significant drawbacks, explains Talukder. For instance, centrifugation is too expensive to be used for low value uses of microalgae, such as biofuel. Similarly inadequate, chemical flocculation contaminates the harvested microalgae with toxic metal salts, causing difficulties in further processing or extraction of desired products.

The A*STAR team knew that less toxic natural materials such as starch could be used to precipitate and collect some freshwater microalgae, but this is not suitable for marine microalgae due to undesirable effects of the salty solutions.

What is needed is a non-toxic and preferably natural and widely available material that can bind to, immobilize and precipitate both freshwater and marine microalgae. This led the researchers to investigate fungal mycelium, which they found was not only effective but could also add value by contributing to the total biomass in the combined and harvested material.

The team screened several varieties of fungi with varying results, in some cases achieving a harvesting efficiency of 97 per cent after several hours of mechanical mixing with four times the mass of wet mycelium [1]. Detailed analysis indicated that the key to the binding and immobilizing effect is a simple ionic attraction between the differing electric charges on the surface of the microalgae and the fungal mycelium.

"The next step is to find a collaborator or industrial partner willing to invest in and further explore the invention and commercialize it," says Talukder, as his focus turns from the laboratory toward the challenges of scale-up and industrial production.

Reference

[1] Talukder, M. R., Das, P. & Wu, J. C. Immobilization of microalgae on exogenous fungal mycelium: A promising separation method to harvest both marine and freshwater microalgae. Biochemical Engineering Journal 91, 53–57 (2014).


Associated links
A*STAR article

A*STAR Research | ResearchSEA
Further information:
http://www.researchsea.com

Further reports about: A*STAR biomass freshwater freshwater microalgae fungi microalgae natural toxic

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

NASA team finds noxious ice cloud on saturn's moon titan

19.10.2017 | Physics and Astronomy

New procedure enables cultivation of human brain sections in the petri dish

19.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>