Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

USF study links cardiac hormone-related inflammatory pathway with tumor growth

01.07.2013
A cardiac hormone signaling receptor abundantly expressed both in inflamed tissues and cancers appears to recruit stem cells that form the blood vessels needed to feed tumor growth, reports a new study by scientists at the University of South Florida Nanomedicine Research Center.
The research may lead to the development of new drugs or delivery systems to treat cancer by blocking this receptor, known as natriuretic peptide receptor A (NPRA).

The findings appeared online recently in the journal Stem Cells.

“Our results show that NRPA signaling by cancer cells produces some molecular factors that attract stem cells, which in turn form blood vessels that provide oxygen and nutrients to the tumor,” said the study’s principal investigator Subhra Mohapatra, PhD, associate professor in the Department of Molecular Medicine. “We showed that if the NPRA signal is blocked, so is the angiogenesis and, if the tumor’s blood supply is cut off it will die.”
Using both cultured cells and a mouse model, Dr. Mohapatra and her team modeled interactions to study the association between gene mutations and exposure to an inflammatory tissue microenvironment.

The researchers demonstrated that cardiac hormone NRPA played a key role in the link between inflammation and the development of cancer-causing tumors. Mice lacking NPRA signaling failed to induce tumors. However, co-implanting tumor cells with mesenchymal stem cells, which can turn into cells lining the inner walls of blood vessels, promoted the sprouting of blood vessels (angiogenesis) needed to promote tumor growth in NPRA- deficient mice, the researchers found. Furthermore, they showed that NRPA signaling appears to regulate key inflammatory cytokines involved in attracting these stem cells to tumor cells.

Dr. Mohapatra’s laboratory is testing an innovative drug delivery system using special nanoparticles to specifically target cancers cells like a guided missile, while sparing healthy cells. The treatment is intended to deliver a package of molecules that interferes with the cardiac hormone receptor’s ability to signal.

Dr. Mohapatra collaborated with Shyam Mohapatra, PhD, and Srinivas Nagaraj, PhD, both faculty members in the Nanomedicine Research Center and Department of Internal Medicine, on genetic and immunological aspects of the study.

The study was supported by the National Institutes of Health and a Florida Biomedical Research Grant.

-USF Health-

USF Health’s mission is to envision and implement the future of health. It is the partnership of the USF Health Morsani College of Medicine, the College of Nursing, the College of Public Health, the College of Pharmacy, the School of Biomedical Sciences and the School of Physical Therapy and Rehabilitation Sciences; and the USF Physician’s Group. The University of South Florida is a global research university ranked 50th in the nation by the National Science Foundation for both federal and total research expenditures among all U.S. universities. For more information, visit www.health.usf.edu

Media contact:
Anne DeLotto Baier, USF Health Communications
abaier@health.usf.edu, or (813) 974-3303

Anne DeLotto Baier | EurekAlert!
Further information:
http://www.usf.edu

More articles from Life Sciences:

nachricht Research team creates new possibilities for medicine and materials sciences
22.01.2018 | Humboldt-Universität zu Berlin

nachricht Saarland University bioinformaticians compute gene sequences inherited from each parent
22.01.2018 | Universität des Saarlandes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>