Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

USF and Saneron researchers find additional benefits of cord blood cells in mice modeling ALS

06.02.2012
Repeat injections of human umbilical cord blood cells improved motor neuron survival, delayed disease progression and increased lifespan

Repeated, low-dose injections of mononuclear cells derived from human umbilical cord blood (MNC hUCB, tradename: U-CORD-CELL™) have been found effective in protecting motor neuron cells, delaying disease progression and increasing lifespan for mice modeling amyotrophic lateral sclerosis, or ALS, also referred to as Lou Gehrig's disease, report University of South Florida researchers and colleagues from Saneron CCEL Therapeutics, Inc., and the Ribeirao Preto School of Medicine at the University of Sao Paulo, Brazil.

Their study was published online Feb. 3, 2012 in the journal PLoS ONE.

ALS is a neurodegenerative disorder characterized by loss of motor neurons leading to progressive paralysis and death. To date, there are no reliable treatments available for ALS, although cell transplantation therapies are promising. The researchers considered MNC hUBC preferable to other potential cell sources for injection because the hUBC cells are rich in primitive stem cells and can develop into various kinds of cells, including neural cells.

Although previous studies found single high doses of MNC hUBC administered to pre-symptomatic ALS-modeled mice effective, the USF researchers considered a single high dose for clinical purposes "impractical."

"Our present pre-clinical, translational study evaluated the effects of multiple low-dose, systemic injections of MNC hUBC into G93A mice modeling ALS," said study lead author Svitlana Garbuzova-Davis, PhD, DSc, assistant professor in the USF Center of Excellence for Aging and Brain Repair. "The study included symptomatic mice, asymptomatic mice and a control group."

According to Dr. Garbuzova-Davis, a "modulatory effect" of the MNC hUCB cells was determined on the inflammatory environment of the spinal cord.

"We hypothesized that the effect of the multiple MNC hUCB cell administrations decreased neuroinflammation in the spinal cord, even when administered into symptomatic mice, resulting in neuroprotection that promoted motor neuron survival," said co-author Maria C. O. Rodrigues, MD, PhD, associated with both USF and the University of Sao Paulo.

Additionally, the researchers found that although the number of grafted cells identified in the spinal cord was low, the treatment was effective, suggesting that various factors secreted by the cells accounted for the therapeutic impact.

Functional improvement in the test mice was determined through several tests.

"Because functional improvement was detected in the mice shortly after MNC hUCB administration, a neuroprotective function of the factors secreted by the administered cells is likely, along with some degree of motor neuron repair," Dr. Garbuzova-Davis said.

The study results should provide essential information and the impetus for future clinical trials of low-dose MNC hUBC, said co-author Nicole Kuzmin-Nichols, MBA, president and COO of Saneron CCEL Therapeutics, Inc.

"Most important for translational purposes was proving the effectiveness of cell administration initiated once the symptomatic disease stage had begun," Kuzmin-Nichols said. "This study illustrated how the practical application of multiple low doses commencing at the beginning of the symptomatic disease stage could ultimately benefit disease outcomes."

The findings provide new insights and may be key to future treatment in patients with ALS, said Clifton L. Gooch, MD, FAAN, professor and chair of the USF Department of Neurology, director of the USF Neuroscience Collaborative, and founder of the USF ALS Center.

"Many therapies have shown benefit when given to ALS mice at a time before they develop symptoms of the disease," Dr. Gooch said. "Unfortunately, in humans we have no clear way to identify who is going to get ALS in advance of symptoms in the vast majority of patients. Consequently, the fact that MNC hUCB therapy works -- even when given after symptom onset - is very important and makes it more likely that this approach may also work in humans. Additionally, this study underscores the importance of the cells and factors that act to support the deteriorating motor nerves, knowledge critical to our understanding and treatment of ALS."

Citation: Garbuzova-Davis S, Rodrigues MCO, Mirtyl S, Turner S, Mitha S, Sodhi J, Suthakaran S, Eve DJ, Sanberg CD, Kuzmin-Nichols N, Sanberg PR. Multiple Intravenous Administrations of Human Umbilical Cord Blood Cells Benefit in a Mouse Model of ALS, PLoS ONE, February 3, 2012.

All USF faculty member study authors are consultants to Saneron CCEL Therapeutics, Inc.

USF Health's mission is to envision and implement the future of health. It is the partnership of the USF Health Morsani College of Medicine, the College of Nursing, the College of Public Health, the College of Pharmacy, the School of Biomedical Sciences and the School of Physical Therapy and Rehabilitation Sciences; and the USF Physician's Group. The University of South Florida is a global research university ranked 34th in federal research expenditures for public universities.

Saneron CCEL Therapeutics, Inc. is a biotechnology R&D company, focused on neurological and cardiac cell therapy for the early intervention and treatment of several devastating or deadly diseases, which lack adequate treatment options. Saneron, a University of South Florida spin-out company is located at the Tampa Bay Technology Incubator. An affiliate of Cryo-Cell International, Inc., Saneron is committed to providing readily available, noncontroversial stem cells for cellular therapies and has patented and patent-pending technology relating to our platform technology of umbilical cord blood and Sertoli cells.

Anne DeLotto Baier | EurekAlert!
Further information:
http://www.usf.edu

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>