Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

USC scientists identify key protein linked to acute liver failure

08.09.2011
Inhibition of protein protects liver from acetaminophen toxicity in mice

New research from the Keck School of Medicine of the University of Southern California (USC) may help prevent damage to the liver caused by drugs like acetaminophen and other stressors.

Acetaminophen, more commonly known as Tylenol, helps relieve pain and reduce fever. The over-the-counter drug is a major ingredient in many cold and flu remedies as well as prescription painkillers like Percocet and Vicodin.

However, metabolized by the liver, acetaminophen is the most common cause of drug-induced liver disease and acute liver failure in the United States and United Kingdom. Tylenol's maker announced in July that it was lowering the maximum recommended daily dosage to 3,000 milligrams to help prevent accidental overdoses.

Doctors at the Keck School of Medicine of USC have identified a protein on the mitochondria of liver cells in mice that, when silenced, protects against liver toxicity usually associated with excess doses of acetaminophen.

They found that the protein Sab, or SH3-domain binding protein 5, binds with the enzyme JNK (c-Jun N-terminal kinase). JNK regulates cellular metabolism and survival in response to stress, protecting cells when activated for brief intervals. However, JNK also kills cells when activated for prolonged periods of time.

"Because the short-term activation of JNK is associated with cell survival, Sab is potentially a better target than inhibiting JNK, which could have adverse effects," said Neil Kaplowitz, M.D., the study's lead investigator and professor of medicine at the Keck School.

Researchers have long believed that acetaminophen was converted into toxic metabolites that, in excess, overwhelm liver cells, causing them to die. In a 2008 study, Kaplowitz, who holds the Keck School's Thomas H. Brem Chair in Medicine and Veronica P. Budnick Chair in Liver Disease, and other USC colleagues turned that theory around — they found that it was not the metabolite, but rather the sustained activation of JNK that harmed the organ. By inhibiting JNK activation in mice, injury to the liver caused by large doses of acetaminophen was avoided.

In the current study, published online by the Journal of Biological Chemistry in August, the scientists silenced Sab in mice, which did not affect the metabolism of acetaminophen but successfully prevented liver injury. They also tested the effect on liver injury caused by apoptosis, or programmed cell death in response to inflammatory proteins that are implicated in many diseases and tissues — silencing Sab protected the liver in that case, too.

"We proved that the sustained activation of JNK targets Sab and is a requirement for the subsequent death of liver cells," Kaplowitz said. "We then showed that it is a universal effect. Developing a drug to protect against cell death, one could argue to target JNK — but that's a double-edged sword. This provides a whole new target: Create a drug that inhibits the interaction between JNK and Sab."

Co-authors include Sanda Win, Tin Aung Than, Derick Han and Lydia M. Petrovic. Their research was funded by the National Institutes of Health.

Alison Trinidad | EurekAlert!
Further information:
http://www.usc.edu

More articles from Life Sciences:

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

nachricht How gut bacteria can make us ill
18.01.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

127 at one blow...

18.01.2017 | Life Sciences

Brain-Computer Interface: What if computers could intuitively understand us

18.01.2017 | Information Technology

How gut bacteria can make us ill

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>