Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


USC researchers identify key mechanism that regulates the development of stem cells into neurons

Findings provide insight into potential therapies for neurodegenerative disorders and cancers

Researchers at the University of Southern California (USC) have identified a novel mechanism in the regulation and differentiation of neural stem cells.

Researchers found that the protein receptor Ryk has a key role in the differentiation of neural stem cells, and demonstrated a signaling mechanism that regulates neuronal differentiation as stem cells begin to grow into neurons. The study will be published in the Nov. 11 issue of the journal Developmental Cell, and is now available online.

The findings could have important implications for regenerative medicine and cancer therapies, says Wange Lu, Ph.D., assistant professor of biochemistry and molecular biology at the Keck School of Medicine of USC, and the principal investigator on the study.

"Neural stem cells can potentially be used for cell-replacement therapy for neurodegenerative diseases such as Alzheimer's and Parkinson's Disease, as well as spinal cord injury," Lu says. "Knowledge gained from this study will potentially help to generate neurons for such therapy. This knowledge can also be used to inhibit the growth of brain cancer stem cells."

During brain development, neural stem cells respond to the surrounding environment by either proliferation or differentiation, but the molecular mechanisms underlying the development of neural stem cells and neurons are unclear, Lu notes.

Ryk functions as a receptor of Wnt proteins required for cell-fate determination, axon guidance and neurite outgrowth in organisms. Researchers at the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC analyzed sections of the forebrain in animal model embryos to investigate Ryk's function in vivo.

They found that during neurogenesis, when neural stem cells start to grow into neurons, Ryk protein is cleaved and translocates to the cell nucleus to regulate neuronal differentiation.

This finding is extremely important for understanding the regulation of self-renewal and differentiation of neural stem cells, Lu says. Previous research has shown that Ryk functions as a receptor of Wnt proteins. However, the role of Ryk in neural stem cells and the molecular mechanism of Ryk signaling have not previously been known.

"This study will help in our efforts to produce nerve cells from embryonic stem cells, and may lead to the development of new strategies for the repair of the nervous system, using protein or small molecule therapeutic agents," says Martin Pera, Ph.D., director of the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC.

Further research is needed to explore how Ryk regulates neuronal gene expression, Lu says. Researchers are now expanding their research to studies of differentiation of human embryonic stem cells into neural stem cells and neurons. These studies are very important for regenerative medicine and drug discovery for therapy of neurodegenerative diseases.

Meghan Lewit | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Enormous dome in central Andes driven by huge magma body beneath it

25.10.2016 | Earth Sciences

First time-lapse footage of cell activity during limb regeneration

25.10.2016 | Life Sciences

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

More VideoLinks >>>