Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

USC researcher learns how to break a sweat

24.10.2013
Without sweat, we would overheat and die. In a recent paper in the journal Public Library of Science One (PLOS ONE), USC faculty member Krzysztof Kobielak and a team of researchers explored the ultimate origin of this sticky, stinky but vital substance — sweat gland stem cells.

Kobielak and his team used a system to make all of the sweat gland cells in a mouse easy to spot: labeling them with green fluorescent protein (GFP), which is visible under ultraviolet light.


Staining of slow-cycling sweat gland cells (green) with the protein laminin (red) and the fluorescent stain DAPI (blue) (Image by Yvonne Leung)

Over time, the GFP became dimmer as it was diluted among dividing sweat gland cells. After four weeks, the only cells that remained fluorescent were the ones that did not divide or divided very slowly — a known property among stem cells of certain tissues, including the hair follicle and cornea. Therefore, these slow-dividing, fluorescent cells in the sweat gland’s coiled lower region were likely also stem cells.

Then, the first author of this paper, graduate student Yvonne Leung, tested whether these fluorescent cells could do what stem cells do best — differentiate into multiple cell types. To the researchers’ surprise, these glowing cells generated not only sweat glands, but also hair follicles when placed in the skin of a mouse without GFP.

The researchers also determined that under certain conditions, the sweat gland stem cells could heal skin wounds and regenerate all layers of the epidermis.

“That was a big surprise for us that those very quiescent sweat gland stem cells maintain multilineage plasticity — participating not only in their own regeneration, but also in the regeneration of hair follicles and skin after injury,” said Kobielak, assistant professor of pathology at the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC.

This offers exciting possibilities for developing future stem cell-based treatments for skin and sweat gland-related conditions, such as hyperhidrosis or hypohidrosis (excessive or insufficient sweating). It could also lay the foundation for creating fully functional skin — containing both sweat glands and hair follicles — for burn victims.

Additional co-authors on the study were Eve Kandyba, Yi-Bu Chen and Seth Ruffins from the Broad Center.

The study was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health (grant numbers R03-AR061028 and R01-AR061552).

Marie Rippen | EurekAlert!
Further information:
http://www.usc.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>