Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Usage of plants as bio-factories - Large scale production of pharmaceuticals in tomatoes

30.10.2015

Fruits and vegetables are healthy. This is something every child knows. However, we would need to consume high amounts of many plant products to achieve an efficient dose of helpful natural compounds, because those are often low-concentrated in plants.

Scientists of Dr. Alisdair Fernie’s research group at the Max Planck Institute of Molecular Plant Physiology (MPI-MP) and of Prof. Cathie Martin’s group from the John Innes Center, England, described a possibility to use crop plants for large scale production of natural compounds. They published their findings in the journal “Nature Communications”.


Medically relevant compounds can be enriched in tomatoes to produce industrial quantities of pharmaceuticals at natural basis.

Saleh Alseekh, Max Planck Institute of Molecular Plant Physiology

Medically relevant substances in plants are so called secondary metabolites, including e.g. pigments and deterrents that enable plants to protect themselves against pests. They are not only useful for the plant itself, but can be helpful for humans as well. The beneficial effects of most medicinal plants are a consequence of them containing these substrates.

Two medical compounds, namely resveratrol and genistein, belong to the phenylpropanoides. Resveratrol is found in grapes naturally and it has been reported to extend the lifespan of different animals. Genistein, a secondary product in soybean, has been suggested to play a role in the prevention of different cancers, particularly breast cancer.

However, nobody has the ability to drink 50 bottles of wine or to eat 2.5kg soybeans per day – this would be the necessary amount of consumption to receive the beneficial dose of these natural products. The researchers in Germany and England sought for another way to make these compounds available.

For this purpose, the scientists analyzed a gene which is responsible for the production of the so called AtMYB12 protein. This protein itself can actively regulate the phenylpropanoid production. The researchers used the model plant Arabidopsis thaliana for their experiments, a herb which is growing all over the world. “This protein is working like a switch, which can turn the production of secondary plant substances on or off”, describes Alisdair Fernie, research group leader at the MPI MP in Potsdam.

The next step was the introduction of this protein into tomato plants to activate the production of requested compounds in the fruits. Additionally, it was necessary to integrate genes for enzymes from grapes or soybean. Herewith, the researchers managed to integrate a new pathway into tomato plants, which allows the production of resveratrol and genistein.

The integration of valuable compounds into tomatoes has economic advantages. The tomato is a high yielding crop - producing up to 500 tons per hectare in countries delivering the highest yields (FAOSTAT 2013). This qualifies them to work as bio-factories to produce industrial quantities of natural compounds of use. Moreover, they are easy to handle: they can be harvested and juiced and the valuable compounds can be extracted from the juice and directly used as pharmaceuticals in medicine. The authors state, that this technique could also be applied to other compounds. Such production systems are easier and faster in contrast to chemical synthesis or through extraction from traditional plant sources which contain only tiny amounts of respective natural products.

Contact:
Dr. Alisdair Fernie
Max Planck Institute of Molecular Plant Physiology
Tel. +49 331/567 8211
fernie@mpimp-golm.mpg.de

Dr. Ulrike Glaubitz
Max Planck Institute of Molecular Plant Physiology
Public Relations
Tel. +49 331/567 8275
glaubitz@mpimp-golm.mpg.de
http://www.mpimp-golm.mpg.de

Original publication:
Yang Zhang, Eugenio Butelli, Saleh Alseekh, Takayuki Tohge, Ghanasyam Rallapalli, Jie Luo, Prashant G. Kawar, Lionel Hill, Angelo Santino, Alisdair R. Fernie & Cathie Martin
Multi-level engineering facilitates the production of phenylpropanoid compounds in tomato
Nature Communications 6, Article number: 863, 26.10.2015, doi:10.1038/ncomms9635

Weitere Informationen:

http://www.mpimp-golm.mpg.de/2025324/biofactories

Ursula Ross-Stitt | Max-Planck-Institut für Molekulare Pflanzenphysiologie

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>