Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Urinary tract infections steal from hosts' defense arsenals

09.07.2012
Humans have known for centuries that copper is a potent weapon against infection. New research shows that the bacteria that cause serious urinary tract infections "know" this, too, and steal copper to prevent the metal from being used against them.

Blocking this thievery with a drug may significantly improve patients' chances of fighting off infections, according to researchers at Washington University School of Medicine in St. Louis. The findings appear online July 8 in Nature Chemical Biology.

In the United States alone, annual treatment costs for urinary tract infections are estimated to run as high as $1.6 billion. Most urinary tract infections are caused by Escherichia coli (E. coli).

"While some patients are able to clear these infections without issue, in others the infection persists or recurs despite antibiotic therapy," says senior author Jeff Henderson, MD, PhD, assistant professor of medicine and of molecular microbiology. "In some cases, the infection spreads to the kidney or the blood and becomes life-threatening. We've been investigating what's different about the bacteria that cause these more troublesome infections."

Scientists have known for years that E. coli makes a molecule called yersiniabactin that takes iron from host cells. The bacteria need the iron to grow and reproduce.

In earlier research, Henderson found that the E. coli that cause serious infections are more likely to make yersiniabactin. This finding and the fact that E. coli already produce another molecule that steals iron led Henderson and Kaveri Chaturvedi, a student in his laboratory, to suspect that the bacterium might be using yersiniabactin for other purposes.

To test the theory, the researchers put yersiniabactin in urine samples from healthy patients. They found the molecule bound iron as expected but also picked up copper. Next, they conducted the same analysis in samples from patients with urinary tract infections who were treated at the University of Washington in Seattle.

"We found copper bound to yersiniabactin in nearly every patient whose bacteria made the molecule," Henderson says. "Yersiniabactin was often bound to copper more than it was to iron."

When researchers put E. coli in the same test tube with copper, the bacteria that made yersiniabactin were more likely to survive.

Copper's microbe-fighting properties were recognized long before scientists had described the microbes that cause infection. Ancient Greeks and Egyptians knew that treating wounds with copper improved the healing process.

Modern researchers have two explanations for copper's anti-microbial effects: the metal can stimulate production of other chemically reactive molecules that damage bacteria; and it is also directly toxic to the bacteria.

Henderson, who treats patients with urinary tract infections at Barnes-Jewish Hospital, is currently studying whether the presence or absence of yersiniabactin can help physicians assess an infection's chances of becoming more serious.

He and his colleagues are also looking at other disease-causing bacteria that make yersiniabactin to see if they use it in a fashion similar to the E. coli that cause urinary tract infections.

Chaturvedi KS, Hung CS, Crowley JR, Stapleton AE, Henderson JP. The siderophore yersiniabactin bids copper to protect pathogens during infection. Nature Chemical Biology, July 8, 2012.

Funding from the Burroughs-Wellcome Fund and the National Institutes of Health (K12 HD001459-09, AI 07172, HL101263, DK64540, DK082315, RR024992, RR00954, GM103422-35, DK20579 and DK56341) supported this research.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

nachricht Calcium may play a role in the development of Parkinson's disease
19.02.2018 | University of Cambridge

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Japanese researchers develop ultrathin, highly elastic skin display

19.02.2018 | Information Technology

Dispersal of Fish Eggs by Water Birds – Just a Myth?

19.02.2018 | Ecology, The Environment and Conservation

Studying mitosis' structure to understand the inside of cancer cells

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>