Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Urged on by urchins: How sea lilies got their get-up-and-go

16.03.2010
Nature abounds with examples of evolutionary arms races. Certain marine snails, for example, evolved thick shells and spines to avoid be eaten, but crabs and fish foiled the snails by developing shell-crushing claws and jaws.

Common as such interactions may be, it's often difficult to trace their origins back in evolutionary time.

Now, a study by University of Michigan paleontologist Tomasz Baumiller and colleagues finds that sea urchins have been preying on marine animals known as crinoids for more than 200 million years and suggests that such interactions drove one type of crinoid---the sea lily---to develop the ability to escape by creeping along the ocean floor. The work, which builds on previous research on present-day sea lilies and urchins, is scheduled to be published online this week in the Proceedings of the National Academy of Sciences.

With their long stalks and feathery arms, sea lilies look a lot like their garden-variety namesakes. Perhaps because of that resemblance, scientists long had thought that sea lilies stayed rooted instead of moving around like their stalkless relatives, the feather stars. But in the 1980s, Baumiller and collaborator Charles Messing of Nova Southeastern University's Oceanographic Center in Dania Beach, Fla., observed sea lilies shedding the ends of their stalks to release themselves from their anchor points and using their feathery arms to crawl away, dragging their stalks behind them.

Then, while going through hundreds of hours of video shot during submersible dives, the two researchers came across footage that offered an explanation for why sea lilies might get up and go. The videos showed sea urchins lurking in gardens of sea lilies, some of which appeared to be creeping away from the predators. In some photos, the sea floor around the urchins was littered with sea lily arms, like table scraps left from a feast. Further studies by Baumiller, Messing and Rich Mooi of the California Academy of Sciences suggested that sea urchins don't simply scavenge bits of dead sea lilies that they find on the ocean floor; they bite pieces right off their prey, giving sea lilies plenty of reason to shed their stalk ends like lizards' tails and scoot away.

When those findings were announced in 2005, the researchers said the next step was to scrutinize fossil crinoids for clues to how and when sea lilies developed the ability to shed their stalk ends and move around. In the new research being reported in PNAS, that's what they, along with Forest Gahn of Brigham Young University and Polish collaborators Mariusz Salamon and Przemyslaw Gorzelak, have done.

First, the researchers put sea urchins into a tank with detached crinoid arms, pieces of crinoid stalks and arms, and live crinoids. Every urchin that was given the opportunity at least nibbled on crinoids, and one even ate a whole feather star. This experiment not only confirmed that urchins prey on crinoids, but it also revealed that crinoid parts that pass undigested through urchins bear characteristic scratches and pits that match the size and shape of the teeth in the urchin's "mouth."

To find out whether urchins preyed on crinoids in the distant past, the researchers looked for the same kinds of bite marks on more than 2,500 crinoid stalk fossils from Poland, dating back to the middle of the Triassic period, some 225 million years ago. More than 500 of the fossils had the telltale markings.

The findings suggest that the development of motility in crinoids, as well as other escape strategies such as active swimming and floating, were stimulated by their interactions with predators. The time frame is significant, too, said Baumiller, professor of geological sciences and a curator at the U-M Museum of Paleontology. Some of the best examples of the effects of escalating interactions between predators and prey come from something called the Mesozoic Marine Revolution (MMR), a dramatic increase in the diversity of predators and their prey that started during the late Mesozoic Era, about 150 million years ago. But the new study suggests that, at least for crinoids and their predators, the arms race began even earlier.

The research was funded by the National Science Foundation, National Geographic Society and the Foundation for Polish Science.

More information:

Tomasz Baumiller:
http://www.lsa.umich.edu/umich/v/index.jsp?vgnextoid=641200ace3664110VgnVCM1000009db1d38dRCRD&vgnextchannel=

6eea9e58f14e3110VgnVCM1000003d01010aRCRD&vgnextfmt=default

Proceedings of the National Academy of Sciences:
http://www.pnas.org/
A 2005 video of creeping crinoids:
http://www.ns.umich.edu/podcast/video2.php?id=1219

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>