Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Urban athletes show that for orangutans, it pays to sway

04.07.2012
Swaying trees is the way to go, if you are a primate crossing the jungle. Using human street athletes as stand-ins for orangutans, researchers have measured the energy required to navigate a forest using different strategies and found it pays to stay up in the trees. Their work was presented at the Society for Experimental Biology's meeting in Salzburg, Austria on 2 July 2012.

The findings help us to understand why orangutans spend most of their lives in trees despite being much larger than other tree-dwelling animals. It also helps to explain how these primates get by on their diet of mainly fruit, which does not provide a lot of energy.

Dr Lewis Halsey of the University of Roehampton, who led the study, said: "Energy expenditure could be a key constraint for orangutans – moving through trees could be energetically expensive."

The team found that the most efficient way to cross from one tree to another is usually to sway back and forth on your tree until you can reach the next one. When trees are stiff, it is more efficient to jump.

For heavy primates the tree must be quite stiff before jumping becomes the easier option. According to Halsey: "Heavier orangutans don't jump, and we may have an explanation why."

To compare the energy required to sway trees, climb trees, or jump from branch to branch, Halsey's team created obstacle courses simulating these activities. But instead of orangutans, the participants were parkour athletes, specially trained street gymnasts with good flexibility and spatial awareness. The athletes wore devices that recorded their oxygen consumption as they proceeded through the activities.

Halsey added: "Because primates are not easy to work with, estimates of energy expenditure have been very indirect. We have gone a step closer to understanding these costs by measuring energy expenditure in a model primate – the parkour athlete."

Catie Lichten | EurekAlert!
Further information:
http://www.sebiology.org/

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>