Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Urban athletes show that for orangutans, it pays to sway

04.07.2012
Swaying trees is the way to go, if you are a primate crossing the jungle. Using human street athletes as stand-ins for orangutans, researchers have measured the energy required to navigate a forest using different strategies and found it pays to stay up in the trees. Their work was presented at the Society for Experimental Biology's meeting in Salzburg, Austria on 2 July 2012.

The findings help us to understand why orangutans spend most of their lives in trees despite being much larger than other tree-dwelling animals. It also helps to explain how these primates get by on their diet of mainly fruit, which does not provide a lot of energy.

Dr Lewis Halsey of the University of Roehampton, who led the study, said: "Energy expenditure could be a key constraint for orangutans – moving through trees could be energetically expensive."

The team found that the most efficient way to cross from one tree to another is usually to sway back and forth on your tree until you can reach the next one. When trees are stiff, it is more efficient to jump.

For heavy primates the tree must be quite stiff before jumping becomes the easier option. According to Halsey: "Heavier orangutans don't jump, and we may have an explanation why."

To compare the energy required to sway trees, climb trees, or jump from branch to branch, Halsey's team created obstacle courses simulating these activities. But instead of orangutans, the participants were parkour athletes, specially trained street gymnasts with good flexibility and spatial awareness. The athletes wore devices that recorded their oxygen consumption as they proceeded through the activities.

Halsey added: "Because primates are not easy to work with, estimates of energy expenditure have been very indirect. We have gone a step closer to understanding these costs by measuring energy expenditure in a model primate – the parkour athlete."

Catie Lichten | EurekAlert!
Further information:
http://www.sebiology.org/

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>