Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UofL epidemiologist uncovers new genes linked to abdominal fat

23.01.2014
Excess abdominal fat can be a precursor to diseases such as cardiovascular disease, type 2 diabetes and cancer.

A person’s measure of belly fat is reflected in the ratio of waist circumference to hip circumference, and it is estimated that genetics account for about 30-60 percent of waist-to-hip ratio (WHR).

Kira Taylor, Ph.D., M.S., assistant professor, University of Louisville School of Public Health and Information Sciences, and her research team have identified five new genes associated with increased WHR, potentially moving science a step closer to developing a medication to treat obesity or obesity-related diseases.

The researchers recently published their findings in Human Molecular Genetics.

The team conducted an analysis of more than 57,000 people of European descent, and searched for genes that increase risk of high waist-to-hip ratio, independent of overall obesity. They investigated over 50,000 genetic variants in 2,000 genes thought to be involved in cardiovascular or metabolic traits.

Their analysis identified three new genes associated with increased WHR in both men and women, and discovered two new genes that appear to affect WHR in women only. Of the latter, one gene, SHC1, appears to interact with 17 other proteins known to have involvement in obesity, and is highly expressed in fat tissue. In addition, the genetic variant the team discovered in SHC1 is linked to another variant that causes an amino acid change in the protein, possibly changing the function or expression of the protein.

“This is the first time SHC1 has been associated with abdominal fat,” Taylor said. “We believe this discovery holds great opportunity for medicinal chemistry and eventually, personalized medicine. If scientists can find a way to fine-tune the expression of this gene, we could potentially reduce the risk of excessive fat in the mid-section and its consequences, such as cardiovascular disease.”

Prior research has found that mice lacking the SHC1 protein are leaner, suggesting this molecule may have a role in metabolic imbalance and premature cell deterioration by supplying too much nutrition for normal growth and development.

Additional evidence finds SHC1 activates the insulin receptor, triggering multiple signaling events that affect fat cell growth.

Julie Heflin | EurekAlert!
Further information:
http://www.louisville.edu

More articles from Life Sciences:

nachricht Even plants can be stressed
03.09.2015 | Max-Planck-Institut für Molekulare Pflanzenphysiologie

nachricht Research team from Münster develops innovative catalytic chemistry process
03.09.2015 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer ISE Develops Highly Compact Inverter for Uninterruptible Power Supplies

Silicon Carbide Components Enable Efficiency of 98.7 percent

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE have developed a highly compact and efficient inverter for use in uninterruptible power...

Im Focus: How wind sculpted Earth's largest dust deposit

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from...

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Together - Work - Experience

03.09.2015 | Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

 
Latest News

Lighter with Laser Welding

03.09.2015 | Process Engineering

For 2-D boron, it's all about that base

03.09.2015 | Materials Sciences

Phagraphene, a 'relative' of graphene, discovered

03.09.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>