Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UO-Berkeley Lab unveil new nano-sized synthetic scaffolding technique


Oil-and-water approach from Richmond's UO lab to spark new line of versatile peptoid nanosheets

Scientists, including University of Oregon chemist Geraldine Richmond, have tapped oil and water to create scaffolds of self-assembling, synthetic proteins called peptoid nanosheets that mimic complex biological mechanisms and processes.

The accomplishment -- detailed this week in a paper placed online ahead of print by the Proceedings of the National Academy of Sciences -- is expected to fuel an alternative design of the two-dimensional peptoid nanosheets that can be used in a broad range of applications. Among them could be improved chemical sensors and separators, and safer, more effective drug-delivery vehicles.

Study co-author Ronald Zuckermann of the Molecular Foundry at Lawrence Berkeley National Laboratory (LBNL) first developed these ultra-thin nanosheets in 2010 using an air-and-water combination.

"We often think of oil on water as something that is environmentally bad when, in fact, my group over the past 20 years has been studying the unique properties of the junction between water and oil as an interesting place for molecules to assemble in unique ways -- including for soaps and oil dispersants," said Richmond, who holds a UO presidential chair. "This study shows it is also a unique platform for making nanosheets."

Lead authors on the project were Ellen J. Robertson, a doctoral student in Richmond's lab at the time of the research, and Gloria K. Oliver, a postdoctoral researcher at LBNL. Robertson is now a postdoctoral researcher at LBNL.

Work in Richmond's lab helped to identify the mechanism behind the formation of the nanosheets at an oil-water interface.

"Supramolecular assembly at an oil-water interface is an effective way to produce 2D nanomaterials from peptoids because that interface helps pre-organize the peptoid chains to facilitate their self-interaction," said Zuckermann, a senior scientist at LBNL's Molecular Foundry in a news release. "This increased understanding of the peptoid assembly mechanism should enable us to scale-up to produce large quantities, or scale- down, using microfluidics, to screen many different nanosheets for novel functions."

Zuckermann and Richmond are the corresponding authors on the paper. Additional co-authors are Menglu Qian and Caroline Proulx, both of LBNL.

Like natural proteins, synthetic proteins fold and conform into structures that allow them to do specific functions. In his earlier work, Zuckermann's team at LBNL's Molecular Foundry discovered a technique to synthesize peptoids into sheets that were just a few nanometers thick but up to 100 micrometers in length. These were among the largest and thinnest free-floating organic crystals ever made, with an area-to-thickness equivalent of a plastic sheet covering a football field.

"Peptoid nanosheet properties can be tailored with great precision," Zuckermann says, "and since peptoids are less vulnerable to chemical or metabolic breakdown than proteins, they are a highly promising platform for self-assembling bio-inspired nanomaterials."

To create the new version of the nanosheets, the research team used vibrational sum frequency spectroscopy to probe the molecular interactions between the peptoids as they assemble at the oil-water interface. The work showed that peptoid polymers adsorbed to the interface are highly ordered in a way that is influenced by interactions between neighboring molecules.

The substitution of oil in place of air creates a raft of new opportunities for the engineering and production of peptoid nanosheets, the researchers said. The oil phase, for example, could contain chemical reagents, serve to minimize evaporation of the aqueous phase or enable microfluidic production.


The U.S. Department of Energy's Office of Basic Energy Sciences (grant DE-FG02-96ER45557) supported the research done in Richmond's UO lab. Work at the Molecular Foundry at LBNL was supported by the DOE (under contract DE-AC02-05CH11231) and the Defense Threat Reduction Agency (grant IACRO-B1144571).

Media Contact: Jim Barlow, director of science and research communications, 541-346-3481,

Sources: Geraldine Richmond is traveling but can be reached through the media contact above; Ronald Zuckermann, Molecular Foundry at Lawrence Berkeley National Laboratory, 510-486-7091,

Jim Barlow | Eurek Alert!

Further reports about: LBNL Molecular Oregon nanomaterials peptoid properties proteins synthetic technique

More articles from Life Sciences:

nachricht Two decades of training students and experts in tracking infectious disease
27.11.2015 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Increased carbon dioxide enhances plankton growth, opposite of what was expected
27.11.2015 | Bigelow Laboratory for Ocean Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Siemens to supply 126 megawatts to onshore wind power plants in Scotland

27.11.2015 | Press release

Two decades of training students and experts in tracking infectious disease

27.11.2015 | Life Sciences

Coming to a monitor near you: A defect-free, molecule-thick film

27.11.2015 | Materials Sciences

More VideoLinks >>>