Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New, unusually large virus kills anthrax agent

28.01.2014
From a zebra carcass on the plains of Namibia in Southern Africa, an international team of researchers has discovered a new, unusually large virus (or bacteriophage) that infects the bacterium that causes anthrax.

The novel bacteriophage could eventually open up new ways to detect, treat or decontaminate the anthrax bacillus and its relatives that cause food poisoning. The work is published Jan. 27 in the journal PLOS One.


This shows zebras graze in Etosha National Park, Namibia. Zebras can fall victim to anthrax. The new bacteriophage virus called Tsamsa, isolated from zebra carcasses in the park, kills the anthrax bacterium.

Credit: Holly Ganz, UC Davis.


The newly-isolated Tsamsa virus is a bacteriophage that infects and kills the anthrax bacterium and close relatives that cause food poisoning. It is one of the largest bacteriophages ever discovered.

Credit: Jochen Klumpp, ETH Zurich, Switzerland.

The virus was isolated from samples collected from carcasses of zebras that died of anthrax in Etosha National Park, Namibia. The anthrax bacterium, Bacillus anthracis, forms spores that survive in soil for long periods. Zebras are infected when they pick up the spores while grazing; the bacteria multiply and when the animal dies, they form spores that return to the soil as the carcass decomposes.

While anthrax is caused by a bacterium that invades and kills its animal host, bacteriophages, literally "bacteria eaters" are viruses that invade and kill bacterial hosts.

The first thing the team noticed was that the virus was a voracious predator of the anthrax bacterium, said Holly Ganz, a research scientist at the University of California, Davis Genome Center and first author on the paper.

They also noticed that the new virus, named Bacillus phage Tsamsa, is unusually large, with a giant head, a long tail and a large genome, placing it among the largest known bacteriophages.

Tsamsa infects not only B. anthracis but also some closely related bacteria, including strains of Bacillus cereus, which can cause food poisoning. Sequencing the genome allowed researchers to identify the gene for lysin, an enzyme that the virus uses to kill bacterial cells, that has potential use as an antibiotic or disinfecting agent.

Bacteriophages are often highly specific to a particular strain of bacteria, and when they were first discovered in the early 20th century there was strong interest in them as antimicrobial agents. But the discovery of penicillin and other antibiotics eclipsed phage treatments in the West, although research continued in the Soviet Union.

"With growing concerns about antibiotic resistance and superbugs, people are coming back to look at phages," said Ganz said.

One advantage of bacteriophages is that because they tend to be very specific, they can potentially target only "bad" bacteria while leaving beneficial bacteria unharmed.

Ganz began the work as a postdoctoral scientist on a team led by Wayne Getz, Professor of Environmental Science, Policy and Management at UC Berkeley and at the University of KwaZulu-Natal, South Africa. Sequencing of the phage genome was conducted at UC Davis after Ganz joined the laboratory of Professor Jonathan Eisen.

Ganz said that she hoped the publication of the phage's sequence information would enable other researchers to investigate further and potentially develop applications for the phage and its proteins.

"You might use it to detect the anthrax Bacillus or B. cereus; use it as an alternative to antibiotics or as part of a decontaminant," she said.

Other authors on the study are: Wayne Getz, Christina Law and Richard Calendar, UC Berkeley; Martina Schmuki, Fritz Eichenseher, Martin Loessner and Jochen Klumpp at the Institute of Food, Nutrition and Health, ETH Zurich, Switzerland; Jonas Korlach, Pacific Biosciences, Menlo Park, Calif.; and Wolfgang Beyer, University of Hohenheim, Stuttgart, Germany. The work was supported by the NIH.

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Life Sciences:

nachricht Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria
29.05.2015 | Carnegie Institution

nachricht Scientists use unmanned aerial vehicle to study gray whales from above
29.05.2015 | NOAA National Marine Fisheries Service

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lasers are the key to mastering challenges in lightweight construction

Many joining and cutting processes are possible only with lasers. New technologies make it possible to manufacture metal components with hollow structures that are significantly lighter and yet just as stable as solid components. In addition, lasers can be used to combine various lightweight construction materials and steels with each other. The Fraunhofer Institute for Laser Technology ILT in Aachen is presenting a range of such solutions at the LASER World of Photonics trade fair from June 22 to 25, 2015 in Munich, Germany, (Hall A3, Stand 121).

Lightweight construction materials are popular: aluminum is used in the bodywork of cars, for example, and aircraft fuselages already consist in large part of...

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria

29.05.2015 | Life Sciences

First Eastern Pacific tropical depression runs ahead of dawn

29.05.2015 | Earth Sciences

Donuts, math, and superdense teleportation of quantum information

29.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>