Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New, unusually large virus kills anthrax agent

28.01.2014
From a zebra carcass on the plains of Namibia in Southern Africa, an international team of researchers has discovered a new, unusually large virus (or bacteriophage) that infects the bacterium that causes anthrax.

The novel bacteriophage could eventually open up new ways to detect, treat or decontaminate the anthrax bacillus and its relatives that cause food poisoning. The work is published Jan. 27 in the journal PLOS One.


This shows zebras graze in Etosha National Park, Namibia. Zebras can fall victim to anthrax. The new bacteriophage virus called Tsamsa, isolated from zebra carcasses in the park, kills the anthrax bacterium.

Credit: Holly Ganz, UC Davis.


The newly-isolated Tsamsa virus is a bacteriophage that infects and kills the anthrax bacterium and close relatives that cause food poisoning. It is one of the largest bacteriophages ever discovered.

Credit: Jochen Klumpp, ETH Zurich, Switzerland.

The virus was isolated from samples collected from carcasses of zebras that died of anthrax in Etosha National Park, Namibia. The anthrax bacterium, Bacillus anthracis, forms spores that survive in soil for long periods. Zebras are infected when they pick up the spores while grazing; the bacteria multiply and when the animal dies, they form spores that return to the soil as the carcass decomposes.

While anthrax is caused by a bacterium that invades and kills its animal host, bacteriophages, literally "bacteria eaters" are viruses that invade and kill bacterial hosts.

The first thing the team noticed was that the virus was a voracious predator of the anthrax bacterium, said Holly Ganz, a research scientist at the University of California, Davis Genome Center and first author on the paper.

They also noticed that the new virus, named Bacillus phage Tsamsa, is unusually large, with a giant head, a long tail and a large genome, placing it among the largest known bacteriophages.

Tsamsa infects not only B. anthracis but also some closely related bacteria, including strains of Bacillus cereus, which can cause food poisoning. Sequencing the genome allowed researchers to identify the gene for lysin, an enzyme that the virus uses to kill bacterial cells, that has potential use as an antibiotic or disinfecting agent.

Bacteriophages are often highly specific to a particular strain of bacteria, and when they were first discovered in the early 20th century there was strong interest in them as antimicrobial agents. But the discovery of penicillin and other antibiotics eclipsed phage treatments in the West, although research continued in the Soviet Union.

"With growing concerns about antibiotic resistance and superbugs, people are coming back to look at phages," said Ganz said.

One advantage of bacteriophages is that because they tend to be very specific, they can potentially target only "bad" bacteria while leaving beneficial bacteria unharmed.

Ganz began the work as a postdoctoral scientist on a team led by Wayne Getz, Professor of Environmental Science, Policy and Management at UC Berkeley and at the University of KwaZulu-Natal, South Africa. Sequencing of the phage genome was conducted at UC Davis after Ganz joined the laboratory of Professor Jonathan Eisen.

Ganz said that she hoped the publication of the phage's sequence information would enable other researchers to investigate further and potentially develop applications for the phage and its proteins.

"You might use it to detect the anthrax Bacillus or B. cereus; use it as an alternative to antibiotics or as part of a decontaminant," she said.

Other authors on the study are: Wayne Getz, Christina Law and Richard Calendar, UC Berkeley; Martina Schmuki, Fritz Eichenseher, Martin Loessner and Jochen Klumpp at the Institute of Food, Nutrition and Health, ETH Zurich, Switzerland; Jonas Korlach, Pacific Biosciences, Menlo Park, Calif.; and Wolfgang Beyer, University of Hohenheim, Stuttgart, Germany. The work was supported by the NIH.

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>