Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New, unusually large virus kills anthrax agent

28.01.2014
From a zebra carcass on the plains of Namibia in Southern Africa, an international team of researchers has discovered a new, unusually large virus (or bacteriophage) that infects the bacterium that causes anthrax.

The novel bacteriophage could eventually open up new ways to detect, treat or decontaminate the anthrax bacillus and its relatives that cause food poisoning. The work is published Jan. 27 in the journal PLOS One.


This shows zebras graze in Etosha National Park, Namibia. Zebras can fall victim to anthrax. The new bacteriophage virus called Tsamsa, isolated from zebra carcasses in the park, kills the anthrax bacterium.

Credit: Holly Ganz, UC Davis.


The newly-isolated Tsamsa virus is a bacteriophage that infects and kills the anthrax bacterium and close relatives that cause food poisoning. It is one of the largest bacteriophages ever discovered.

Credit: Jochen Klumpp, ETH Zurich, Switzerland.

The virus was isolated from samples collected from carcasses of zebras that died of anthrax in Etosha National Park, Namibia. The anthrax bacterium, Bacillus anthracis, forms spores that survive in soil for long periods. Zebras are infected when they pick up the spores while grazing; the bacteria multiply and when the animal dies, they form spores that return to the soil as the carcass decomposes.

While anthrax is caused by a bacterium that invades and kills its animal host, bacteriophages, literally "bacteria eaters" are viruses that invade and kill bacterial hosts.

The first thing the team noticed was that the virus was a voracious predator of the anthrax bacterium, said Holly Ganz, a research scientist at the University of California, Davis Genome Center and first author on the paper.

They also noticed that the new virus, named Bacillus phage Tsamsa, is unusually large, with a giant head, a long tail and a large genome, placing it among the largest known bacteriophages.

Tsamsa infects not only B. anthracis but also some closely related bacteria, including strains of Bacillus cereus, which can cause food poisoning. Sequencing the genome allowed researchers to identify the gene for lysin, an enzyme that the virus uses to kill bacterial cells, that has potential use as an antibiotic or disinfecting agent.

Bacteriophages are often highly specific to a particular strain of bacteria, and when they were first discovered in the early 20th century there was strong interest in them as antimicrobial agents. But the discovery of penicillin and other antibiotics eclipsed phage treatments in the West, although research continued in the Soviet Union.

"With growing concerns about antibiotic resistance and superbugs, people are coming back to look at phages," said Ganz said.

One advantage of bacteriophages is that because they tend to be very specific, they can potentially target only "bad" bacteria while leaving beneficial bacteria unharmed.

Ganz began the work as a postdoctoral scientist on a team led by Wayne Getz, Professor of Environmental Science, Policy and Management at UC Berkeley and at the University of KwaZulu-Natal, South Africa. Sequencing of the phage genome was conducted at UC Davis after Ganz joined the laboratory of Professor Jonathan Eisen.

Ganz said that she hoped the publication of the phage's sequence information would enable other researchers to investigate further and potentially develop applications for the phage and its proteins.

"You might use it to detect the anthrax Bacillus or B. cereus; use it as an alternative to antibiotics or as part of a decontaminant," she said.

Other authors on the study are: Wayne Getz, Christina Law and Richard Calendar, UC Berkeley; Martina Schmuki, Fritz Eichenseher, Martin Loessner and Jochen Klumpp at the Institute of Food, Nutrition and Health, ETH Zurich, Switzerland; Jonas Korlach, Pacific Biosciences, Menlo Park, Calif.; and Wolfgang Beyer, University of Hohenheim, Stuttgart, Germany. The work was supported by the NIH.

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Life Sciences:

nachricht Learning from Nature: Genomic database standard alleviates search for novel antibiotics
02.09.2015 | Max-Planck-Institut für marine Mikrobiologie

nachricht Orang-utan females prefer cheek-padded males
02.09.2015 | Max Planck Institute for Evolutionary Anthropology, Leipzig

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How wind sculpted Earth's largest dust deposit

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from...

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Tiny Drops of Early Universe 'Perfect' Fluid

02.09.2015 | Physics and Astronomy

Learning from Nature: Genomic database standard alleviates search for novel antibiotics

02.09.2015 | Life Sciences

International research project gets high level of funding

02.09.2015 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>