Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unusually Large Family of Green Fluorescent Proteins Discovered in Marine Creature

22.05.2009
Scripps scientists find unexpected role for proteins: antioxidants.

Researchers at Scripps Institution of Oceanography at UC San Diego and the Salk Institute for Biological Studies have discovered a family of green fluorescent proteins (GFPs) in a primitive sea animal, along with new clues about the role of the proteins that has nothing to do with their famous glow.

GFPs recently gained international attention with the awarding of the 2008 Nobel Prize in Chemistry, shared by UC San Diego’s Roger Tsien, as word spread of their extensive presence in nature as well as benefit to researchers. GFPs, originally isolated from a luminous jellyfish, have gained scientific ubiquity in uses ranging from biomedical tracers to probes for testing environmental quality. But while the value of GFPs in biomedicine and bioengineering has become evident, their diversity across the tree of life and their role in nature haven’t been as easily deciphered.

New hints have emerged as Erin Bomati, a former postdoctoral researcher at Scripps Oceanography, Gerard Manning of the Salk Institute for Biological Studies and Scripps lead-scientist Dimitri Deheyn discovered the largest known family of GFPs. They found 16 related types of GFPs in amphioxus, a thin, non-luminous fish-like animal that lives in coastal areas and spends most of its time burrowed in ocean sand. The discovery, described in the journal BioMed Central (BMC) Evolutionary Biology, was made in Branchiostoma floridae, an amphioxus species collected off Tampa, Fla.

Amphioxus, also known as lancelets, is the closest living invertebrate relative of vertebrates and much more evolved than the jellyfish in which the original GFP discovery was made. In the paper, the researchers demonstrate that the 16 newly discovered GFPs have different characteristics of light production, some brightly fluorescent and others less or not at all.

“Despite a huge knowledge base about the biochemistry of GFPs, little is know about their biological functions and our results clearly indicate that it is not always related to fluorescence,” said Deheyn.

Using a range of genetic analyses and techniques, including sequencing and cloning, the researchers discovered that some GFPs, especially those with low fluorescence capacity, could have a defense function in the wild acting as an antioxidant, working to protect the animal in times of illness or stress. It’s the first evidence of the proteins being used in a role beyond glowing fluorescence within the same organism.

“Originally GFPs might have been selected for their function of being able to absorb or re-emit light, but here we show that some GFPs can also act as antioxidants,” said Deheyn. “This is the first time that we have identified distinct functions in coexisting GFPs.”

Deheyn said GFPs appear to suppress so-called “oxygen radicals” from harmful effects to the amphioxus’ body, similar to the role antioxidants serve in human bodies.

Deheyn said the new findings will help scientists understand the evolution of this protein across the animal kingdom, while providing bioengineers and biotechnologists a new window of comparison through the novel family of GFPs and an unveiled aspect of their application. The range of colors and functions encoded by these GFPs may also help to decode which aspects of their sequences are responsible for which functions and the engineering of new forms of GFP probes.

The research was supported by the Air Force Office of Scientific Research’s Biomimetics, Biomaterials and Biointerfacial Sciences program.

Note to broadcast and cable producers: UC San Diego provides an on-campus satellite uplink facility for live or pre-recorded television interviews. Please phone or e-mail the media contact listed above to arrange an interview.

Scripps Institution of Oceanography: scripps.ucsd.edu

Scripps News: scrippsnews.ucsd.edu

Scripps Institution of Oceanography, at UC San Diego, is one of the oldest, largest and most important centers for global science research and education in the world. The National Research Council has ranked Scripps first in faculty quality among oceanography programs nationwide. Now in its second century of discovery, the scientific scope of the institution has grown to include biological, physical, chemical, geological, geophysical and atmospheric studies of the earth as a system. Hundreds of research programs covering a wide range of scientific areas are under way today in 65 countries. The institution has a staff of about 1,300, and annual expenditures of approximately $155 million from federal, state and private sources. Scripps operates one of the largest U.S. academic fleets with four oceanographic research ships and one research platform for worldwide exploration.

Mario Aguilera | Newswise Science News
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>