Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Untangling the Tree of Life

16.05.2013
These days, phylogeneticists – experts who painstakingly map the complex branches of the tree of life – suffer from an embarrassment of riches.

The genomics revolution has given them mountains of DNA data that they can sift through to reconstruct the evolutionary history that connects all living beings. But the unprecedented quantity has also caused a serious problem: The trees produced by a number of well-supported studies have come to contradictory conclusions.


Antonis Rokas, Vanderbilt University

Two major phylogenetic studies recently reached contradictory conclusions about whether the snail’s closest relative is the bivalve (clams, oysters, mussels) or an enigmatic group of organisms called tusk shells. The work of the Vanderbilt phylogenists suggests that the conflict is due to the fact that the three groups diverged rapidly a long time ago.

“It has become common for top-notch studies to report genealogies that strongly contradict each other in where certain organisms sprang from, such as the place of sponges on the animal tree or of snails on the tree of mollusks,” said Antonis Rokas, Cornelius Vanderbilt Chair in Biological Sciences at Vanderbilt University.

In a study published online May 8 by the journal Nature, Rokas and graduate student Leonidas Salichos analyze the reasons for these differences and propose a suite of novel techniques that can resolve the contradictions and provide greater accuracy in deciphering the deep branches of life’s tree.

“The study by Salichos and Rokas comes at a critical time when scientists are grappling with how best to detect the signature of evolutionary history from a deluge of genetic data. These authors provide intriguing insights into our standard analytical toolbox, and suggest it may be time to abandon some of our most trusted tools when it comes to the analysis of big data sets. This significant work will certainly challenge the community of evolutionary biologists to rethink how best to reconstruct phylogeny,” said Michael F. Whiting, program director of systematics and biodiversity science at the National Science Foundation, which funded the study.

To gain insight into this paradox, Salichos assembled and analyzed more than 1,000 genes – approximately 20 percent of the entire yeast genome – from each of 23 yeast species. He quickly realized that the histories of the 1,000-plus genes were all slightly different from each other as well as different from the genealogy constructed from a simultaneous analysis of all the genes.

“I was quite surprised by this result,” Salichos pointed out.

By adapting an algorithm from information theory, the researchers found that they could use these distinct gene genealogies to quantify the conflict and focus on those parts of the tree that are problematic.

In broad terms, Rokas and Salichos found that genetic data is less reliable during periods of rapid radiation, when new species were formed rapidly. A case in point is the Cambrian explosion, the sudden appearance about 540 million years ago of a remarkable diversity of animal species, without apparent predecessors. Before about 580 million years ago, most organisms were very simple, consisting of single cells occasionally organized into colonies.

“A lot of the debate on the differences in the trees has been between studies concerning the ‘bushy’ branches that took place in these ‘radiations’,” Rokas said.

The researchers also found that the further back in time they went the less reliable the genetic data becomes. “Radioactive dating methods are only accurate over a certain time span,” said Rokas. “We think that the value of DNA data might have a similar limit, posing considerable challenges to existing algorithms to resolve radiations that took place in deep time.”

The research was supported by National Science Foundation CAREER award DEB-0844968.

Visit Research News @ Vanderbilt for more research news from Vanderbilt. [Media Note: Vanderbilt has a 24/7 TV and radio studio with a dedicated fiber optic line and ISDN line. Use of the TV studio with Vanderbilt experts is free, except for reserving fiber time.]

David F. Salisbury | Vanderbilt University
Further information:
http://www.vanderbilt.edu

More articles from Life Sciences:

nachricht Oestrogen regulates pathological changes of bones via bone lining cells
28.07.2017 | Veterinärmedizinische Universität Wien

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>