Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Untangling the Tree of Life

16.05.2013
These days, phylogeneticists – experts who painstakingly map the complex branches of the tree of life – suffer from an embarrassment of riches.

The genomics revolution has given them mountains of DNA data that they can sift through to reconstruct the evolutionary history that connects all living beings. But the unprecedented quantity has also caused a serious problem: The trees produced by a number of well-supported studies have come to contradictory conclusions.


Antonis Rokas, Vanderbilt University

Two major phylogenetic studies recently reached contradictory conclusions about whether the snail’s closest relative is the bivalve (clams, oysters, mussels) or an enigmatic group of organisms called tusk shells. The work of the Vanderbilt phylogenists suggests that the conflict is due to the fact that the three groups diverged rapidly a long time ago.

“It has become common for top-notch studies to report genealogies that strongly contradict each other in where certain organisms sprang from, such as the place of sponges on the animal tree or of snails on the tree of mollusks,” said Antonis Rokas, Cornelius Vanderbilt Chair in Biological Sciences at Vanderbilt University.

In a study published online May 8 by the journal Nature, Rokas and graduate student Leonidas Salichos analyze the reasons for these differences and propose a suite of novel techniques that can resolve the contradictions and provide greater accuracy in deciphering the deep branches of life’s tree.

“The study by Salichos and Rokas comes at a critical time when scientists are grappling with how best to detect the signature of evolutionary history from a deluge of genetic data. These authors provide intriguing insights into our standard analytical toolbox, and suggest it may be time to abandon some of our most trusted tools when it comes to the analysis of big data sets. This significant work will certainly challenge the community of evolutionary biologists to rethink how best to reconstruct phylogeny,” said Michael F. Whiting, program director of systematics and biodiversity science at the National Science Foundation, which funded the study.

To gain insight into this paradox, Salichos assembled and analyzed more than 1,000 genes – approximately 20 percent of the entire yeast genome – from each of 23 yeast species. He quickly realized that the histories of the 1,000-plus genes were all slightly different from each other as well as different from the genealogy constructed from a simultaneous analysis of all the genes.

“I was quite surprised by this result,” Salichos pointed out.

By adapting an algorithm from information theory, the researchers found that they could use these distinct gene genealogies to quantify the conflict and focus on those parts of the tree that are problematic.

In broad terms, Rokas and Salichos found that genetic data is less reliable during periods of rapid radiation, when new species were formed rapidly. A case in point is the Cambrian explosion, the sudden appearance about 540 million years ago of a remarkable diversity of animal species, without apparent predecessors. Before about 580 million years ago, most organisms were very simple, consisting of single cells occasionally organized into colonies.

“A lot of the debate on the differences in the trees has been between studies concerning the ‘bushy’ branches that took place in these ‘radiations’,” Rokas said.

The researchers also found that the further back in time they went the less reliable the genetic data becomes. “Radioactive dating methods are only accurate over a certain time span,” said Rokas. “We think that the value of DNA data might have a similar limit, posing considerable challenges to existing algorithms to resolve radiations that took place in deep time.”

The research was supported by National Science Foundation CAREER award DEB-0844968.

Visit Research News @ Vanderbilt for more research news from Vanderbilt. [Media Note: Vanderbilt has a 24/7 TV and radio studio with a dedicated fiber optic line and ISDN line. Use of the TV studio with Vanderbilt experts is free, except for reserving fiber time.]

David F. Salisbury | Vanderbilt University
Further information:
http://www.vanderbilt.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>