Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Unsung' cells double the benefits of a new osteoporosis drug

06.10.2014

Added drug testing in mice shows role of preosteoclasts in maintaining bone health

Experiments in mice with a bone disorder similar to that in women after menopause show that a scientifically overlooked group of cells are likely crucial to the process of bone loss caused by the disorder, according to Johns Hopkins researchers.


This image shows osteoporosis caused by induced menopause improves in mice treated with the drug L-235 as shown by (TOP) an increase in specialized blood vessels (yellow) required for bone building and (BOTTOM) increased bone density in the pelvis and leg bones. Untreated, left; treated, right.

Credit: Xu Cao, Johns Hopkins Medicine

Their discovery, they say, not only raises the research profile of the cells, called preosteoclasts, but also explains the success and activity of an experimental osteoporosis drug with promising results in phase III clinical trials.

A summary of their work will be published on Oct. 5 in the journal Nature Medicine.

"We didn't know that the drug affects preosteoclasts, nor did we understand how important preosteoclasts are in maintaining healthy bones," says Xu Cao, Ph.D., the Lee H. Riley Jr., M.D., Professor of Orthopaedic Surgery. "Now drug companies hoping to reverse osteoporosis can look for even more drugs that make use of and target these interesting cells."

The bones of mice, people and all land animals are not only necessary for strength and structure, but also as warehouses for calcium, which cells throughout the body use continuously for everyday tasks like cell-to-cell communication, muscle strength, and even embryo fertilization and hormone balance.

Calcium is taken from digested food and stored in the semihollow space inside bones. To access the stored calcium, the inner bone goes through a process called resorption, in which cells called osteoclasts attach to the bone and dissolve the calcium and other stored minerals. Nearby, specialized blood vessels pick up the calcium and send it throughout the body. They also bring in nutrients needed for new bone formation.

Under normal conditions, bone resorption is carefully balanced with bone rebuilding to maintain bone strength. But in women who have entered menopause, decreases in estrogen can cause bone resorption to overcome bone rebuilding, leading to osteoporosis and frequent bone breaks. In the U.S., an estimated 25 million women have osteoporosis.

"Most osteoporosis drugs on the market slow down bone resorption but do nothing to encourage bone rebuilding," says Cao. Previous data, including that from early clinical trials in humans, indicated that the drug odanacatib decreases bone resorption by hobbling CTSK, one of the enzymes used to resorb bone. What came as a pleasant surprise was that the same drug also increased bone rebuilding, but the question was how it did so, Cao says.

To learn more, Cao and his team studied mice genetically engineered to have neither bone-dissolving osteoclasts nor their precursors, preosteoclasts. Though the inner bones of the mice were abnormal, as expected, the team also found that the outside layers of the bones were thin. Moreover, the specialized blood vessels needed to transport bone-building supplies were in scarce supply, suggesting overall that osteoclasts and their precursors regulate bone building and bone resorption.

The team grew the two cell types separately in the laboratory and collected the liquid around them to test for proteins released by the cells. They found that preosteoclasts — but not mature osteoclasts — secrete a protein called PDGF-BB, which is a powerful attracter both of cells that make bone-building cells and those that make the specialized blood vessels. As expected, when the preosteoclasts of mice were prevented from making PDGF-BB, the mice had weak bones.

"Before a new building is constructed, the roads have to be in place so that the materials and equipment can be brought in," says Cao. "In a similar way, preosteoclasts call blood vessels into an area before bone-building cells begin to make new bone."

When mice were given L-235, the animal form of odanacatib, the numbers of their preosteoclasts and osteoclasts increased, and they secreted more PDGF-BB. The increased PDGF-BB brought in more cells for making blood vessels and bone, which led to more of the specialized blood vessels and thicker bones.

To see if the drug could help reverse the increased bone resorption and decreased blood vessel formation of postmenopausal osteoporosis, the researchers simulated menopause in female mice by removing their ovaries. At first, the mice had thinner bones and fewer blood vessels, but treatment with the drug increased the concentration of PDGF-BB in the blood, the number of specialized blood vessels both inside and outside of the bones, and the overall thickness and density of the bone.

According to Cao, in addition to slowing bone resorption by blocking CTSK, an osteoclast "weapon," the drug also appears to slow down the maturation of preosteoclasts, lengthening the amount of time they secrete PDGF-BB before becoming osteoclasts. With increased PDGF-BB, more specialized blood vessels are made and more bone-building cells arrive, restoring the balance between bone resorption and bone rebuilding.

Odanacatib is produced by Merck & Co. Inc. and has already gone through phase III clinical trials with good results, according to Cao. "It is unusual to see a single drug that decreases bone resorption and increases bone rebuilding at the same time," says Cao. "Beyond that, we now know just how important preosteoclasts and PDGF-BB are to bone building, which is information we can use in designing future studies."

###

Other authors of the report include Hui Xie, Zhuang Cui, Long Wang, Zhuying Xia, Yin Hu, Lingling Xian, Changjun Li, Liang Xie, Janet Crane, Mei Wan, Gehua Zhen, Qin Bian, Weizhong Chang and Tao Qiu of the Johns Hopkins University School of Medicine, plus additional authors from other institutions.

This work was supported by grants from the National Institute of Diabetes and Digestive and Kidney Disorders (DK057501), the National Institute of Arthritis and Musculoskeletal and Skin Diseases (AR063943), China's National Science Fund for Distinguished Young Scientists (81125006) and Merck.

On the Web:

View the article at Nature Medicine. http://dx.doi.org/10.1038/nm.3668

Visit the Cao Lab's website. http://www.hopkinsmedicine.org/profiles/results/directory/profile/0000003/xu-cao

Catherine Kolf | Eurek Alert!

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>