Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unstable chromosome regions are the origin of yeast's brewing capacity

17.05.2010
'Genes living in the outskirts of chromosomes are more prone to duplication'

The ability of yeast cells to convert sugar to alcohol, the key process in the production of beer and wine, can be attributed to a remarkable evolutionary process. The genes that allow yeast to digest sugars in fruits and grains have been duplicated several times over the course of time – allowing for optimal conversion of different types of sugars (such as sucrose and maltose) into alcohol. The duplications arose because the genes for sugar processing are situated close to the unstable margin of the chromosome. The phenomenon appears not to be limited to alcohol production in yeast, but forms an important principle in the evolution of living organisms. The results are presented in a study by Kevin Verstrepen from K.U.Leuven and VIB, a life sciences institute in Flanders, Belgium, Andrew Murray from Harvard University, and Chris Brown, a joint student of Verstrepen and Murray.. The prominent journal Current Biology unveils the study.

Duplication of existing genes is an important evolutionary process

Living beings evolve generation after generation because their genetic material changes gradually. It remains a mystery how life, in a relatively short time, develops completely new properties. It is unlikely that they just appear out of nothing. Recent research, amongst others by VIB-scientists, showed that the duplication of existing genes can play a crucial role. One copy can retain the original function of the gene while the new copy may develop a new function. This can sometimes be very different from the original gene.

Living on the edge increases your chances of being duplicated

In the new study, Chris Brown, a PhD student in Verstrepen´s lab, shows that some genes that are closely located in the ends of the chromosomes, are duplicated more often. The ends of chromosomes, called subtelomeres, seem to function as evolutionary laboratories of our cells. New genes are continuously developed and tested in these "gene nurseries".

Duplication process is of great importance for beer yeast

It appears that duplication at the subtelomeres already occurred in the ancestor of our industrial beer and wine yeasts- Modern strains of beer yeast contain five to ten copies of a prehistoric gene that allows for some sugars to be digested. Each of these modern copies ensures that yeast can digest a particular sugar, and this is much faster than the prehistoric yeast. The massive duplications occurred probably around the Cretaceous era (66 to 145 million years ago). It was no coincidence that this involved the same period in which sweet fruits and grains developed. The duplication of the genes and the further evolution thereof, allowed yeast cells to digest the different sugars in the fruits. In this way, the subtelomeric "gene copying laboratory" ensured that yeasts were able to conquer a new niche. Interestingly, it seems likely that similar subtelomeric gene duplication also stimulates evolution and adaptation in higher organisms, including humans.

Joris Gansemans | EurekAlert!
Further information:
http://www.vib.be

Further reports about: Brown chromosomes evolutionary process living organism maltose sucrose

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>