Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unraveling plant reactions to injury

30.05.2011
Identification of a key compound that regulates plant responses to wounding could provide benefits on three fronts

Better understanding of plant defense systems, and the potential to generate stress-tolerant plants and even new malaria drugs, may all stem from the documentation of a molecular mechanism that plays a significant role in the response of plants to physical injuries, such as cuts. A team of agricultural researchers in Japan, led by Fuminori Takahashi of the RIKEN Plant Science Center in Tsukuba, found that the key protein in the complex mechanism is MPK8, which is fully activated by two signaling pathways working in concert[1].

The researchers showed that MPK8 is activated while the wounded plant mounts an initial emergency response to an injury. Around the fresh wound, the plant produces reactive oxygen species (ROS), such as hydrogen peroxide. These highly toxic compounds kill any pathogens that could access internal tissues via the wound site. However, since ROS can also harm plant tissue they require close regulation. Takahashi and his team—from RIKEN and three Japanese universities—found that the regulator is MPK8.

In addition to the initial response, the injury stimulates the release of calcium ions and starts a cascade of phosphorylation or phosphate-adding compounds. The compounds involved are called mitogen-activated protein kinases (MAPKs). MPK8 is one of the MAPKs of the model plant Arabidopsis.

Takahashi and his colleagues used Arabidopsis plants to investigate how both signaling and the levels of ROS are regulated after physical injury. Using plants into which they had introduced additional copies of the MPK8 gene, the researchers showed that MPK8 was activated under stress, particularly from physical wounding. MPK8 was strongly activated by MKK3, another MAP kinase from higher up the cascade. But it was also activated by calcium ions, specifically when they were bound to proteins called calmodulins. In addition, the researchers determined that the production of MPK8 was associated with regulation of ROS, lowering its accumulation.

A region of MPK8 known as TDY is known to interact or be phosphorylated with both MKK3 and calcium-bound calmodulins. By inhibiting each of these compounds in turn, the researchers showed that full activation of MPK8 demanded activating both of them at once, bringing the signaling pathways together. Finally, by examining the expression of genes, they found that MPK8 regulates the production of ROS by repressing the gene that stimulates their production (Fig 1).

“We think our findings might eventually lead to designing a drug treatment for malaria infection,” says Takahashi, “because the Plasmodium parasite involved uses the same kind of MAPKs.”

The corresponding author for this highlight is based at the Gene Discovery Research Group, RIKEN Plant Science Center

Journal information

[1] Takahashi, F., Mizoguchi, T., Yoshida, R., Ichimura, K. & Shinozaki, K. Calmodulin-dependent activation of MAP kinase for ROS homeostasis in Arabidopsis. Molecular Cell 41, 649–660(2011).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

Further reports about: Arabidopsis plant Arabidopsis thaliana MAP MAPKs MPK8 RIKEN calcium ions signaling pathway

More articles from Life Sciences:

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>