Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unraveling plant reactions to injury

30.05.2011
Identification of a key compound that regulates plant responses to wounding could provide benefits on three fronts

Better understanding of plant defense systems, and the potential to generate stress-tolerant plants and even new malaria drugs, may all stem from the documentation of a molecular mechanism that plays a significant role in the response of plants to physical injuries, such as cuts. A team of agricultural researchers in Japan, led by Fuminori Takahashi of the RIKEN Plant Science Center in Tsukuba, found that the key protein in the complex mechanism is MPK8, which is fully activated by two signaling pathways working in concert[1].

The researchers showed that MPK8 is activated while the wounded plant mounts an initial emergency response to an injury. Around the fresh wound, the plant produces reactive oxygen species (ROS), such as hydrogen peroxide. These highly toxic compounds kill any pathogens that could access internal tissues via the wound site. However, since ROS can also harm plant tissue they require close regulation. Takahashi and his team—from RIKEN and three Japanese universities—found that the regulator is MPK8.

In addition to the initial response, the injury stimulates the release of calcium ions and starts a cascade of phosphorylation or phosphate-adding compounds. The compounds involved are called mitogen-activated protein kinases (MAPKs). MPK8 is one of the MAPKs of the model plant Arabidopsis.

Takahashi and his colleagues used Arabidopsis plants to investigate how both signaling and the levels of ROS are regulated after physical injury. Using plants into which they had introduced additional copies of the MPK8 gene, the researchers showed that MPK8 was activated under stress, particularly from physical wounding. MPK8 was strongly activated by MKK3, another MAP kinase from higher up the cascade. But it was also activated by calcium ions, specifically when they were bound to proteins called calmodulins. In addition, the researchers determined that the production of MPK8 was associated with regulation of ROS, lowering its accumulation.

A region of MPK8 known as TDY is known to interact or be phosphorylated with both MKK3 and calcium-bound calmodulins. By inhibiting each of these compounds in turn, the researchers showed that full activation of MPK8 demanded activating both of them at once, bringing the signaling pathways together. Finally, by examining the expression of genes, they found that MPK8 regulates the production of ROS by repressing the gene that stimulates their production (Fig 1).

“We think our findings might eventually lead to designing a drug treatment for malaria infection,” says Takahashi, “because the Plasmodium parasite involved uses the same kind of MAPKs.”

The corresponding author for this highlight is based at the Gene Discovery Research Group, RIKEN Plant Science Center

Journal information

[1] Takahashi, F., Mizoguchi, T., Yoshida, R., Ichimura, K. & Shinozaki, K. Calmodulin-dependent activation of MAP kinase for ROS homeostasis in Arabidopsis. Molecular Cell 41, 649–660(2011).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

Further reports about: Arabidopsis plant Arabidopsis thaliana MAP MAPKs MPK8 RIKEN calcium ions signaling pathway

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>