Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unraveling the mechanisms behind organ regeneration in zebrafish

03.11.2009
The search for the holy grail of regenerative medicine—the ability to "grow back" a perfect body part when one is lost to injury or disease—has been under way for years, yet the steps involved in this seemingly magic process are still poorly understood.

Now researchers at the Salk Institute for Biological Studies have identified an essential cellular pathway in zebrafish that paves the way for limb regeneration by unlocking gene expression patterns last seen during embryonic development. They found that a process known as histone demethylation switches cells at the amputation site from an inactive to an active state, which turns on the genes required to build a copy of the lost limb.

"This is the first real molecular insight into what is happening during limb regeneration," says first author Scott Stewart, Ph.D., a postdoctoral researcher in the lab of Juan Carlos Izpisúa Belmonte, Ph.D., who led the Salk team. "Until now, how amputation is translated into gene activation has been like magic. Finally we have a handle on a process we can actually follow."

Their findings, which will be published in a forthcoming issue of Proceedings of the National Academy of Sciences, U.S.A., help to explain how epimorphic regeneration—the regrowing of morphologically and functionally perfect copies of amputated limbs—is controlled, an important step toward understanding why certain animals can do it and we cannot.

"Our experiments show that normal development and limb regeneration are controlled by similar mechanisms," explains Izpisúa Belmonte, a professor in the Gene Expression Laboratory. "This finding will help us to ask more specific questions about mammalian limb regeneration: Are the same genes involved when we amputate a mammalian limb? If not, what would happen if we turned them on? And if we can affect these methylation marks in an amputated limb, what effect would that have?"

The Belmonte lab uses zebrafish, a small fish from the minnow family, to study limb regeneration. "If you amputate the tail of the zebrafish, it regenerates in about a week, seemingly with no effort and leaving no scar," explains Stewart. "What's more, it regenerates a perfect copy and—like growing grass—it will do this over and over again."

Since regeneration recapitulates in broad strokes embryonic development, during which a complex multi-cellular organism develops from a handful of embryonic stem cells, the researchers began by comparing gene expression patterns between the two processes. During development, genes within specific cell types are turned on and off to trigger the necessary expression patterns that create a whole animal. Once their job is done, they lie silently till they are turned on once again following amputation.

Based on these similarities, Stewart reasoned that genes involved in regeneration may share silencing mechanisms with the ones active in embryonic stem cells. Embryonic stem cells are maintained in a ready-to-go state, "poised" for action to become whatever cell type is needed. The key to this "poised" state are histones, DNA packaging proteins that are also used as carriers for chemical modifications, such as methylation and acetylation. These chemical marks serve as "on" and "off" switches for specific genes.

Stewart discovered that the histone modifications that poise embryonic stem cell–specific genes for activation are also found on the histones near genes involved in regeneration, putting them into a ready-to-go state. "This suggests that two different gene expression programs may exist; one for normal cellular activity and one for regeneration," explains Stewart. To test this hypothesis, the team looked at the histone marks during regeneration. As suspected, they saw a reduction in "off" switches and an increase in "on" switches in regenerating tissue, tipping the balance toward gene expression.

Delving deeper, the researchers found that enzymes that remove the "off" mark, so-called demethylases, are present in high levels in regenerating tissue. One enzyme in particular, called Kdm6b.1, is found exclusively in cells that are undergoing the regeneration process. Without Kdm6b.1, zebrafish failed to regenerate amputated fins, meaning removal of the "off" mark is a prerequisite for fin regeneration.

In the long term, the Salk researchers hope that these findings will help them understand whether we can affect the outcome of mammalian limb regeneration. In the more immediate future, the team plans to use global approaches to identify all the targets of Kdm6b.1 during regeneration, and to find out what gives the signal to turn these genes off when regeneration is complete.

In addition to Stewart and Izpisúa Belmonte, Zhi-Yang Tsun, also contributed to the study.

The study was funded in part by the California Institute for Regenerative Medicine, the Fundacion Cellex, the G. Harold and Leila Y. Mathers Charitable Foundation, the Ipsen Foundation, and the National Institutes of Health.

About the Salk Institute for Biological Studies:

The Salk Institute for Biological Studies is one of the world's preeminent basic research institutions, where internationally renowned faculty probe fundamental life science questions in a unique, collaborative, and creative environment. Focused both on discovery and on mentoring future generations of researchers, Salk scientists make groundbreaking contributions to our understanding of cancer, aging, Alzheimer's, diabetes, and cardiovascular disorders by studying neuroscience, genetics, cell and plant biology, and related disciplines.

Faculty achievements have been recognized with numerous honors, including Nobel Prizes and memberships in the National Academy of Sciences. Founded in 1960 by polio vaccine pioneer Jonas Salk, M.D., the Institute is an independent nonprofit organization and architectural landmark.

Gina Kirchweger | EurekAlert!
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>