Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unraveling the ins and outs of brain development

14.06.2011
Brain structure is maintained during development by two distinct mechanisms that regulate the production and movement of cells

The embryonic nervous system is a hollow tube consisting of elongated neural progenitor cells, which extend from the inner to the outer surface of the tube. In a section inside the tube called the ventricular zone (VZ), these cells divide and produce immature neurons that migrate outwards. This involves well-characterized movements that are coupled to cell division. After a cell divides at the inner-most VZ region, the nuclei migrate to the outer region, where they synthesize new DNA before returning.


Figure 1: Cell nuclei of brain cells accumulate at the outer surface of the ventricular zone when the cell cycle is blocked. Copyright : 2011 Yoichi Kosodo et al.

To determine how the direction of movement is coupled to the cell division cycle, Yoichi Kosodo and colleagues in Matsuzaki's group at RIKEN Center for Developmental Biology labeled nuclei in the embryonic mouse brain with green fluorescent protein[1]. This enabled them to not only track their movements in cultured brain slices using a video-imaging system, but also correlate their positions with phases of the cell cycle. They found that outward nuclear migration involves back and forth ‘ratcheting’ motions and occurs more slowly than inward migration.

Importantly, they discovered that blocking the cell cycle before DNA synthesis caused nuclei to accumulate at the outer VZ surface (Fig.1), and reduced outward migration. Nuclei migrating back inwards normally crowd out those just finished dividing, thus pushing them away from the inner VZ surface.

Examining their results further, the researchers computationally modeled nuclear migration, and incorporated fluorescent magnetic beads into the inner VZ surface. They observed the beads moving away from the inner VZ surface, and remaining at its outer region.

The researchers also showed that inward migration is closely linked to microtubule reorganization orchestrated by a protein called Tpx2, which is initially expressed in the nuclei of progenitors before moving to the mitotic spindle. This separates newly duplicated chromosomes. Translocation of Tpx2 to the cell region nearest the inner VZ surface promotes migration of the nucleus in that direction by microtubule re-organization. Reducing Tpx2 activity lowered the velocity of inward migration, but introducing the human Tpx2 gene into the cells lacking Tpx2 restored normal speed.

The researchers conclude that two mechanisms maintain brain structure during development. One couples cell migration to the cell cycle, and occurs independently of other cells, with Tpx2 providing an active driving force; and the other involves interactions between the nuclei in the VZ.

The corresponding author for this highlight is based at the Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology

Journal information

[1] Kosodo, Y., Suetsugu, T., Suda, M., Mimori-Kiyosue, Y., Toida, K., Baba, S. A., Kimura, A. & Matsuzaki, F. Regulation of interkinetic nuclear migration by cell cycle-coupled active and passive mechanisms in the developing brain. The EMBO Journal 30, 1690–1704 (2011).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>