Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What it might take to unravel the 'lean mean machine' that is cancer

24.02.2010
Scientists from Sydney's Garvan Institute of Medical Research have published a paper, online today in Nature Cell Biology, describing gene expression in a prostate cancer cell: more sweeping, more targeted and more complex than we could ever have imagined, even five years ago.

The study shows that changes within the prostate cancer cell 'epigenome' (biochemical processes that target DNA and affect gene expression) alter the expression of many genes, silencing their expression within large regions of DNA – nearly 3% of the cell's genome.

Epigenetic 'events' include 'DNA methylation' and 'chromatin modification'. Methylation occurs when a methyl group - one carbon atom and three hydrogen atoms - attaches to a gene, determining the extent to which it is 'switched on' or 'switched off'. Chromatin, responsible for the physical coiling or structuring of DNA, can determine whether or not a gene is accessible for interaction with other molecules inside a cell.

Project leader Professor Susan Clark describes the typical cancer cell as a 'lean mean machine'. "Epigenetic changes reduce the available genome to a point where only the genes that promote cell proliferation are accessible in the cancer cell," she said.

"We can see that the epigenome is remodelled in a very consistent and precise way, effectively swamping the expression of any gene that goes against the cancer cell's interests."

"The swamping encompasses tumour suppressor genes, and all the neighbouring genes around them, as well as non-coding RNA, intergenic regions and microRNAs. Only those genes essential for growth activation are allowed to be active, while all the genes and regions that apply brakes are inactivated."

"We now have an epigenomic map of the prostate cancer cell – which we didn't have before. That has taken three years to develop, including the technology and methods to interpret our tissue samples."

"The map tells us that the tumour cell is very different from the healthy cell. It also tells us that it works in a programmed rather than a random way, and that it targets a significant part of the genome, rather than just single genes."

"It tells us that treating cancer will be far more complex than we imagined, as it will first involve understanding and reversing epigenetic change."

The findings are timely in that they coincide with very recent events and publications that have brought the concepts of the 'epigenome' and 'epigenetics' into world focus. In January 2010 the International Human Epigenome Consortium (IHEC) was launched in Paris (with Professor Clark on the interim steering Committee). Time magazine ran a feature on epigenetics in January, and Nature published two articles on the subject this month: one addressing the importance of IHEC and the urgency of pooling international mind power and resources; the other describing the infinite complexity of the project – orders of magnitude more challenging than the Human Genome Project.

The ultimate aim of IHEC is to produce a map of the human epigenome. The initial intention is to map 1,000 epigenomes within a decade. This will provide a healthy tissue base against which to compare the epigenomes of diseased tissue.

The Human Genome Project, completed in March 2000, found that the human genome contains around 25,000 genes. It took 3 billion US dollars to map them. 1

We do not yet know how many variations the human epigenome is likely to contain – certainly millions – as a single person could have many epigenomes in a lifetime, or even in a day. 2 The technological advances and computational power necessary to map the epigenome, therefore, remain incalculable.

The project at Garvan involved an initial bioinformatics phase; a comparative tissue analysis phase; and a data analysis phase.

The bioinformatics phase analysed publicly available microarray datasets (glass slides containing fragments of every gene across the genome) that had been done on prostate cancer.

Dr Warren Kaplan, Bioinformatics Analyst at Garvan's Peter Wills Bioinformatics Centre, developed new techniques to analyse the microarray data. "We designed a computer program which used a 'sliding window' – a window that computationally moves along the genome, noting the number of genes inside that window and how many of them are downregulated," he said.

"Some of the microarrays we used only measured mRNA – or the level of gene expression. Others measured the overall methylation status of the genes in that same region. It was an opportunity for us to examine the genome in a multi-layered way."

Once Kaplan had provided an initial map, Drs Marcel Coolen and Clare Stirzaker and Jenny Song from Professor Clark's lab found a way to treat and analyse prostate cancer cells, allowing their comparative DNA methylation and chromatin states analysis against the microarray data.

Bioinformaticians within the Clark lab, Aaron Statham and Dr Mark Robinson, then developed novel methodologies to interpret resulting data – essentially tens of millions of numbers. "It was like cracking a code," said Aaron. "At first the data made no sense."

Professor Clark emphasises the importance of developing the new genome technology and knowhow that allows analysis of epigenetic processes.

"There is so much we still don't know," she said. "Already we have an idea of the complexity and how it might impact on the specific drug combinations that you will have to use to reactivate genes, non-coding RNAs and microRNAs within these cancer-affected regions."

"Now that we have a prostate cancer epigenome map, our next step will be to understand the mechanism that's driving the chromatin reduction, or genome reduction within these 'lean mean machines'. In other words, what's the link between the genetics and the epigenetics?"

Footnotes

1. Time Magazine, January 18, 2010
2. Nature, Volume 463, 4 February 2010
ABOUT GARVAN
The Garvan Institute of Medical Research was founded in 1963. Initially a research department of St Vincent's Hospital in Sydney, it is now one of Australia's largest medical research institutions with nearly 500 scientists, students and support staff. Garvan's main research programs are: Cancer, Diabetes & Obesity, Immunology and Inflammation and Neuroscience. Garvan's mission is to make significant contributions to medical science that will change the directions of science and medicine and have major impacts on human health. The outcome of Garvan's discoveries is the development of better methods of diagnosis, treatment, and ultimately, prevention of disease.

MEDIA ENQUIRIES

Alison Heather
Science Communications Manager
Garvan Institute of Medical Research
+61 2 9295 8128
+61 434 071 326
a.heather@garvan.org.au

Alison Heather | EurekAlert!
Further information:
http://www.garvan.org.au

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>