Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unlocking the secret(ase) of building neural circuits

19.01.2011
Mutant presenilin is infamous for its role in the most aggressive form of Alzheimer's disease—early-onset familial Alzheimer's—which can strike people as early as their 30s.

In their latest study, researchers at the Salk Institute uncovered presenilin's productive side: It helps embryonic motor neurons navigate the maze of chemical cues that pull, push and hem them in on their way to their proper targets. Without it, budding motor neurons misread their guidance signals and get stuck in the spinal cord.

By putting genes associated with Alzheimer's disease in a new light, their findings, published in the Jan. 7, 2011, issue of the journal Cell, reveal an important link between the formation of neural circuits and neurodegenerative disorders. "It was a bit of a surprise since we always thought about presenilin in the context of severing neuronal connections rather than wiring the nervous system during embryonic development," says Howard Hughes Medical Institute investigator Samuel Pfaff, Ph.D., a professor in the Gene Expression Laboratory, who led the study.

Presenilin is a component of the enzyme gamma secretase, which cleaves the amyloid precursor protein, resulting in accumulation of beta amyloid fragments. In Alzheimer's, these fragments form hard, insoluble plaques, one of the hallmarks of the disease.

Many embryonic guidance molecules persist in the adult central nervous system, where they participate in maintenance, repair and plasticity of neural circuits. "This could explain how a deregulation of guidance signaling by abnormal presenilin may play a role in the pathogenesis of Alzheimer's disease," proposes Pfaff.

The Salk study also adds an important new piece to the clockwork mechanism that guides growing nerve cells through the embryo and that depends as much on timing as on spatial accuracy. Understanding how axons find their destinations may help restore movement in people following spinal cord injury, or in those with motor neuron diseases such as Lou Gehrig's disease, spinal muscle atrophy and post-polio syndrome.

During normal development, trillions of neurons reach out for others with long, slender extensions to touch, connect and wire the budding nervous system. As the hair-like protrusions, called axons, grope around in the developing embryo, trying to find their proper targets, molecular ushers stationed along their path steer them in the right direction.

"Because of the vast number of neurons in the nervous system, ensuring that every single cell is on target creates more biological complexity than we can account for with the genetic information encoded in our genome," says Pfaff. "There are an estimated 100 trillion connections in our brain and only about 20,000 genes."

To find their course, growing neurons, especially motor neurons, which need to travel very long distances to reach their targets, navigate their path one small segment at a time, guided at each intersection by intermediate guideposts—chemical cues that attract or repel approaching axons. What's more, in a tightly regulated choreography, axons often switch allegiances when they reach a critical junction.

"It provides a way of creating some of these intermediate temporal steps," explains postdoctoral researcher and first author Ge Bai. "It allows the use of a small number of genes to regulate axonal growth by regulating the signals' effects in a very precise temporal and spatial ways."

He and his team found presenilin's unexpected role in controlling the activity of axon guidance signals during a search for genes involved in the fetal development of the nervous system. They had developed a method of engineering mice so that all of their motor neurons glow green. This fluorescence allowed them to visually identify mutant mice that have errors in motor neuron development and function.

One mouse, whose specific defect the researchers had mapped to the gene coding for presenilin, stood out. Failing to exit the spinal cord, its motor neurons got stuck at the midline, a row of cells that lie, moat-like, in the middle of the developing embryo. Bai discovered that in presenilin mutant mice, they were irresistibly attracted to Netrin, which is expressed by the midline.

In normal mice, motor neurons turn a deaf ear to Netrin's siren call and head out to the periphery. They are able to ignore Netrin because the receptor for Netrin is blocked by the so-called Slit/Robo tag team. Without presenilin, however, Netrin receptor fragments that are resistant to Slit/Robo silencing accumulate in the cell, and the motor neurons are now attracted to Netrin.

"The most satisfying thing we have learned about presenilin is that this is a component that is not directly involved in the detection of signals either as a ligand or a receptor but functions as a very important regulator of their spatiotemporal activity," says Bai.

Researchers who also contributed to the work include Onanong Chivatakarn, Dario Bonanomi, Karen Lettieri, and Laura Franco at the Salk Institute; Caihong Xia and Le Ma at the Zilkha Neurogenetic Institute at the University of of Southern California in Los Angeles; Elke Stein in the Department of Molecular, Cellular and Developmental Biology at Yale University, New Haven, CT; and Joseph W. Lewcock, formerly a postdoc in the Pfaff lab and now in the Department of Neurobiology at Genentech, San Francisco.

The work was funded in part by the Howard Hughes Medical Institute and the National Institutes of Health.

About the Salk Institute for Biological Studies:

The Salk Institute for Biological Studies is one of the world's preeminent basic research institutions, where internationally renowned faculty probe fundamental life science questions in a unique, collaborative, and creative environment. Focused both on discovery and on mentoring future generations of researchers, Salk scientists make groundbreaking contributions to our understanding of cancer, aging, Alzheimer's, diabetes and infectious diseases by studying neuroscience, genetics, cell and plant biology, and related disciplines.

Faculty achievements have been recognized with numerous honors, including Nobel Prizes and memberships in the National Academy of Sciences. Founded in 1960 by polio vaccine pioneer Jonas Salk, M.D., the Institute is an independent nonprofit organization and architectural landmark.

Gina Kirchweger | EurekAlert!
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>