Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unlocking the power of wood

22.03.2010
A ‘family’ tree of enzymes from protists in the termite gut may help boost biofuels research

Wood-derived biomass offers a promising source for cellulose-based fuels, but efforts to exploit this energy have been thwarted by the need for methods to deal with a component of the plant cell wall that binds cellulose and interferes with enzymatic processing.

Termites have developed a natural workaround for this problem. Over the course of evolution, the various ‘lower termite’ species have formed an essential partnership with bacteria and protists dwelling within their gut, these derive support from their termite hosts and in turn facilitate the digestion of the insects’ woody diet.

Glycosyl hydrolase family (GHF) enzymes produced by these symbionts are a key component in the cellulose digestion process, enabling efficient cellulose processing without the need for lignin breakdown. “Some of the enzymes that we have found have more than 10-fold higher activity than current industrial enzymes,” says Shigeharu Moriya of the RIKEN Advanced Science Institute in Wako. Since 2001, Moriya and colleagues have been working to characterize these enzymes, and they have now published their analysis of the various GHFs expressed within the gut protist communities of four lower termite species as well as a related wood-eating cockroach1.

These protists are exceptionally challenging to culture and analyze individually, but can be characterized collectively via ‘metagenomic’ techniques that make it possible to assemble massive gene catalogues from a diverse mixture of cell types. This approach revealed a total of 154 clones representing variants of five different GHFs, and the researchers used this sequence data to assemble a phylogenetic tree—essentially a detailed timeline of the evolutionary history of these genes.

GHF5 and 7 were represented in every termite symbiont community investigated, suggesting that their evolution either precedes or coincides with the emergence of termite–protist symbiosis. Interestingly, the data suggest that GHF5 may have been initially acquired by protists from bacteria over the course of one or more ancient gene transfer events. GHF7, on the other hand, appears to have evolved specifically within protists.

The other three enzyme classes—GHF10, 11 and 45—are less broadly conserved, and the author speculate that they provide support for the core GHF5–GHF7 cellulose degradation machinery. “This system is well conserved among various termites, and it may be composed of high-performance enzymes,” says Moriya. His team is now partnering with other RIKEN teams to develop novel techniques for characterizing the metabolic pathways of these protist communities in an effort to identify additional factors that expedite biomass processing.

The corresponding author for this highlight is based at the Biosphere Oriented Biology Research Unit, RIKEN Advanced Science Institute

Journal information

1. Todaka, N., Inoue, T., Saita, K., Ohkuma, M., Nalepa, C.A., Lenz, M., Kudo, T. & Moriya, S. Phylogenetic analysis of cellulolytic enzyme genes from representative lineages of termites and a related cockroach. PLoS ONE 5, e8636 (2010)

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6214
http://www.researchsea.com

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>