Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unlocking the power of wood

22.03.2010
A ‘family’ tree of enzymes from protists in the termite gut may help boost biofuels research

Wood-derived biomass offers a promising source for cellulose-based fuels, but efforts to exploit this energy have been thwarted by the need for methods to deal with a component of the plant cell wall that binds cellulose and interferes with enzymatic processing.

Termites have developed a natural workaround for this problem. Over the course of evolution, the various ‘lower termite’ species have formed an essential partnership with bacteria and protists dwelling within their gut, these derive support from their termite hosts and in turn facilitate the digestion of the insects’ woody diet.

Glycosyl hydrolase family (GHF) enzymes produced by these symbionts are a key component in the cellulose digestion process, enabling efficient cellulose processing without the need for lignin breakdown. “Some of the enzymes that we have found have more than 10-fold higher activity than current industrial enzymes,” says Shigeharu Moriya of the RIKEN Advanced Science Institute in Wako. Since 2001, Moriya and colleagues have been working to characterize these enzymes, and they have now published their analysis of the various GHFs expressed within the gut protist communities of four lower termite species as well as a related wood-eating cockroach1.

These protists are exceptionally challenging to culture and analyze individually, but can be characterized collectively via ‘metagenomic’ techniques that make it possible to assemble massive gene catalogues from a diverse mixture of cell types. This approach revealed a total of 154 clones representing variants of five different GHFs, and the researchers used this sequence data to assemble a phylogenetic tree—essentially a detailed timeline of the evolutionary history of these genes.

GHF5 and 7 were represented in every termite symbiont community investigated, suggesting that their evolution either precedes or coincides with the emergence of termite–protist symbiosis. Interestingly, the data suggest that GHF5 may have been initially acquired by protists from bacteria over the course of one or more ancient gene transfer events. GHF7, on the other hand, appears to have evolved specifically within protists.

The other three enzyme classes—GHF10, 11 and 45—are less broadly conserved, and the author speculate that they provide support for the core GHF5–GHF7 cellulose degradation machinery. “This system is well conserved among various termites, and it may be composed of high-performance enzymes,” says Moriya. His team is now partnering with other RIKEN teams to develop novel techniques for characterizing the metabolic pathways of these protist communities in an effort to identify additional factors that expedite biomass processing.

The corresponding author for this highlight is based at the Biosphere Oriented Biology Research Unit, RIKEN Advanced Science Institute

Journal information

1. Todaka, N., Inoue, T., Saita, K., Ohkuma, M., Nalepa, C.A., Lenz, M., Kudo, T. & Moriya, S. Phylogenetic analysis of cellulolytic enzyme genes from representative lineages of termites and a related cockroach. PLoS ONE 5, e8636 (2010)

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6214
http://www.researchsea.com

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>