Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unlocking the key to human fertility

04.08.2009
Scientists at Leeds and Bradford have discovered a unique ‘DNA signature’ in human sperm, which may act as a key that unlocks an egg’s fertility and triggers new life.

Drs David Miller and David Iles from the University of Leeds, in collaboration with Dr Martin Brinkworth at the University of Bradford, have found that sperm writes a DNA signature that can only be recognised by an egg from the same species. This enables fertilisation and may even explain how a species develops its own unique genetic identity.

Dr Iles says, “What we have discovered is a previously unrecognised DNA packaging ‘signature’ in mammalian sperm that may be essential for successful fertilisation of the egg and development of the embryo. We think it may also be ancient in origin.”

Without the right ‘key’, successful fertilisation either cannot occur, or if it does, development will not proceed normally. Notably, disturbances in human sperm DNA packaging are known to cause male infertility and pregnancy failures.

This ‘lock and key’ mechanism has other profound implications. Not only does it explain why some otherwise healthy men produce sperm that is sterile, but it also explains how different species evolve and retain their own identity.

Says Dr Miller, “Up until now, Doctors have struggled to understand idiopathic male infertility. Our latest research offers a plausible explanation for why some sperm malfunction or fail to function correctly.”

If the DNA carried by a sperm cell was unwound and stretched out, it would actually measure more than a metre in length. In order to fit all this DNA into the microscopic space within the head of the sperm cell, the DNA needs to be very tightly coiled, or packaged. The Leeds study showed that in human and mouse sperm, not all of the DNA is packaged in the same way. Whilst most of the paternal DNA is compressed in an extremely compact fashion, some is packaged less tightly.

“There is a definite pattern to the way DNA is packaged in sperm cells and we can see that this pattern is the same in unrelated fertile men. It is different in the sperm of infertile men. This implies that there is a significance to the packaging of DNA that has a direct relevance to male fertility,” says Dr Iles.

Detailed analyses of the DNA in the ‘open’, less tightly packaged conformation, showed this DNA carries much of the information critical for activating genes essential for directing the development of the embryo. Further investigations showed the same conformation to exist in the sperm of several unrelated human donors and remarkably, highly similar packaging patterns to exist in the sperm of mice.

DNA regions in the ‘open’ conformation may therefore be more vulnerable to damaging toxins, such as those in cigarette smoke and certain anti-cancer drugs, than those that are tightly packaged. As Dr Brinkworth says, “this might mean that anything capable of causing genetic damage to sperm could have particular significance for the development of the embryo”.

The findings also help explain why inter-species breeding is so rarely successful.

Where the locks and keys of two species do not match, however similar their DNA is, no viable offspring can be born. Occasionally, for example, with horses and donkeys, offspring are produced - but because the sperm and egg signatures are incompatible, their development as embryos is abnormal and any offspring are almost always infertile.

The research team believes that the same mechanism must also have played a role during human evolution. In the ancient history of mankind, Neanderthals co-existed with modern humans over many thousands of years. Sexual encounters between these two closely related species cannot be ruled out, yet there is no evidence in our DNA of a legacy from such couplings. It is possible that if offspring were produced, they either did not survive long or if they did, they were unable to breed.

Further information from
Jo Kelly, Campuspr Ltd: tel 0113 258 9880, mob 07980 267756, email jokelly@campuspr.co.uk

Guy Dixon, University of Leeds press office: tel 0113 343 8299, email g.dixon@leeds.ac.uk

Notes to editors

The research was funded by a grant from the BBSRC and the resulting paper, Endonuclease-sensitive regions of human spermatozoal chromatin are highly enriched in promoter and CTCF binding sequences is to be published in the forthcoming issue of Genome Research. It can be found online at

http://genome.cshlp.org/content/early/2009/07/07/gr.094953.109

The findings are the result of a collaborative study between Drs David Miller and David Iles in the Faculties of Medicine and Biological Sciences at the University Leeds, alongside Dr Martin Brinkworth of the Medical Biosciences Research Focus Group at the University of Bradford and partners in Germany and the United States.

The Faculty of Biological Sciences at the University of Leeds is one of the largest in the UK, with over 150 academic staff and over 400 postdoctoral fellows and postgraduate students. The Faculty was ranked 4th in the UK (Nature Journal, 457 (2009) doi:10.1038/457013a) based on results of the 2008 Research Assessment Exercise (RAE). The RAE feedback noted that “virtually all outputs were assessed as being recognized internationally, with many (60%) being internationally excellent or world-leading” in quality.

The Faculty’s research grant portfolio totals some £60M and funders include charities, research councils, the European Union and industry. www.fbs.leeds.ac.uk

The 2008 Research Assessment Exercise showed the University of Leeds to be the UK's eighth biggest research powerhouse. The University is one of the largest higher education institutions in the UK and a member of the Russell Group of research-intensive universities. The University's vision is to secure a place among the world's top 50 by 2015.

Dr. David Iles | EurekAlert!
Further information:
http://www.leeds.ac.uk

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>