Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unlocking the key to human fertility

04.08.2009
Scientists at Leeds and Bradford have discovered a unique ‘DNA signature’ in human sperm, which may act as a key that unlocks an egg’s fertility and triggers new life.

Drs David Miller and David Iles from the University of Leeds, in collaboration with Dr Martin Brinkworth at the University of Bradford, have found that sperm writes a DNA signature that can only be recognised by an egg from the same species. This enables fertilisation and may even explain how a species develops its own unique genetic identity.

Dr Iles says, “What we have discovered is a previously unrecognised DNA packaging ‘signature’ in mammalian sperm that may be essential for successful fertilisation of the egg and development of the embryo. We think it may also be ancient in origin.”

Without the right ‘key’, successful fertilisation either cannot occur, or if it does, development will not proceed normally. Notably, disturbances in human sperm DNA packaging are known to cause male infertility and pregnancy failures.

This ‘lock and key’ mechanism has other profound implications. Not only does it explain why some otherwise healthy men produce sperm that is sterile, but it also explains how different species evolve and retain their own identity.

Says Dr Miller, “Up until now, Doctors have struggled to understand idiopathic male infertility. Our latest research offers a plausible explanation for why some sperm malfunction or fail to function correctly.”

If the DNA carried by a sperm cell was unwound and stretched out, it would actually measure more than a metre in length. In order to fit all this DNA into the microscopic space within the head of the sperm cell, the DNA needs to be very tightly coiled, or packaged. The Leeds study showed that in human and mouse sperm, not all of the DNA is packaged in the same way. Whilst most of the paternal DNA is compressed in an extremely compact fashion, some is packaged less tightly.

“There is a definite pattern to the way DNA is packaged in sperm cells and we can see that this pattern is the same in unrelated fertile men. It is different in the sperm of infertile men. This implies that there is a significance to the packaging of DNA that has a direct relevance to male fertility,” says Dr Iles.

Detailed analyses of the DNA in the ‘open’, less tightly packaged conformation, showed this DNA carries much of the information critical for activating genes essential for directing the development of the embryo. Further investigations showed the same conformation to exist in the sperm of several unrelated human donors and remarkably, highly similar packaging patterns to exist in the sperm of mice.

DNA regions in the ‘open’ conformation may therefore be more vulnerable to damaging toxins, such as those in cigarette smoke and certain anti-cancer drugs, than those that are tightly packaged. As Dr Brinkworth says, “this might mean that anything capable of causing genetic damage to sperm could have particular significance for the development of the embryo”.

The findings also help explain why inter-species breeding is so rarely successful.

Where the locks and keys of two species do not match, however similar their DNA is, no viable offspring can be born. Occasionally, for example, with horses and donkeys, offspring are produced - but because the sperm and egg signatures are incompatible, their development as embryos is abnormal and any offspring are almost always infertile.

The research team believes that the same mechanism must also have played a role during human evolution. In the ancient history of mankind, Neanderthals co-existed with modern humans over many thousands of years. Sexual encounters between these two closely related species cannot be ruled out, yet there is no evidence in our DNA of a legacy from such couplings. It is possible that if offspring were produced, they either did not survive long or if they did, they were unable to breed.

Further information from
Jo Kelly, Campuspr Ltd: tel 0113 258 9880, mob 07980 267756, email jokelly@campuspr.co.uk

Guy Dixon, University of Leeds press office: tel 0113 343 8299, email g.dixon@leeds.ac.uk

Notes to editors

The research was funded by a grant from the BBSRC and the resulting paper, Endonuclease-sensitive regions of human spermatozoal chromatin are highly enriched in promoter and CTCF binding sequences is to be published in the forthcoming issue of Genome Research. It can be found online at

http://genome.cshlp.org/content/early/2009/07/07/gr.094953.109

The findings are the result of a collaborative study between Drs David Miller and David Iles in the Faculties of Medicine and Biological Sciences at the University Leeds, alongside Dr Martin Brinkworth of the Medical Biosciences Research Focus Group at the University of Bradford and partners in Germany and the United States.

The Faculty of Biological Sciences at the University of Leeds is one of the largest in the UK, with over 150 academic staff and over 400 postdoctoral fellows and postgraduate students. The Faculty was ranked 4th in the UK (Nature Journal, 457 (2009) doi:10.1038/457013a) based on results of the 2008 Research Assessment Exercise (RAE). The RAE feedback noted that “virtually all outputs were assessed as being recognized internationally, with many (60%) being internationally excellent or world-leading” in quality.

The Faculty’s research grant portfolio totals some £60M and funders include charities, research councils, the European Union and industry. www.fbs.leeds.ac.uk

The 2008 Research Assessment Exercise showed the University of Leeds to be the UK's eighth biggest research powerhouse. The University is one of the largest higher education institutions in the UK and a member of the Russell Group of research-intensive universities. The University's vision is to secure a place among the world's top 50 by 2015.

Dr. David Iles | EurekAlert!
Further information:
http://www.leeds.ac.uk

More articles from Life Sciences:

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

nachricht Chlamydia: How bacteria take over control
28.03.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>