Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unlocking the genetic and molecular mystery of soft-tissue sarcoma

01.12.2011
Joslin study uncovers potential targets for treating disease

Scientists at Joslin Diabetes Center in Boston have uncovered important molecular and genetic keys to the development of soft-tissue sarcomas in skeletal muscle, giving researchers and clinicians additional targets to stop the growth of these often deadly tumors.

Published in the Proceedings of the National Academy of Sciences, the study identified two major molecular signaling pathways (the Ras and mTOR pathways) that are common in tumor growth and development. These molecular pathways regulate cell growth and division, two cellular properties whose over-activation are hallmarks of cancer biology.

"In humans, some sarcomas respond to chemotherapy," says lead author Amy J. Wagers, PhD, an associate professor of stem cell and regenerative biology at Harvard Medical School and Joslin Diabetes Center, "but many don't. With these findings, we have vetted a list of new candidate targets whose inhibition may lead to regression of these tumors. "

Many soft-tissue sarcomas, which develop in certain tissues such as bone and muscle, carry specific genetic mutations or unique gene signatures, which can allow scientists to develop more precise, targeted therapies. Wagers and her colleagues engineered a tumor system in mice by introducing into mouse skeletal muscle a cancer-carrying gene, or oncogene, known to cause tumors in humans. They used this engineered system to identify a small set of genes that are active in sarcoma tumors.

There are many different types of soft-tissue sarcomas, which develop in tissues that connect, support or surround other structures and organs, including muscle, tendons, nerves, fat and blood vessels. If diagnosed early, treatment, primarily through surgical removal of the tumor, radiation therapy or chemotherapy, can be effective. If the tumor has spread, however, the tumor can be controlled only for a period of time, but treatment does not often cure the disease.

By inducing these tumors in mice, Wagers says the scientists knew when the tumors would form in the mice and where in the body they would develop, which helped them better understand the molecular and genetic pathways underlying the disease. With this knowledge, researchers may be able to develop new intervention strategies that interfere with these genetic activities and stop the growth of this type of tumor.

"With the engineered system we developed, we can find new fragile points in the tumor to target," says first author Simone Hettmer, MD, a pediatric oncologist at the Dana-Farber/Children's Hospital Cancer Center, who treats children with these tumors. In addition, she adds, the system allows scientists to look at the genetic changes in sarcomas and how they interact with the development of tumors and can be applied to sarcomas in tissues other than skeletal muscle.

Surprisingly, says Wagers, the researchers found they could induce tumors using several different "beginning" cells. The scientists generated tumor cells using stem cell-like cells that go on to make either muscle or other connective tissues. Tumors that develop from muscle cells were rhabdomyosarcomas, the most common form of soft-tissue sarcoma seen in children, while tumors that developed from non-muscle cells represented other types of sarcoma.

Wagers and her colleagues are now working on establishing a similar engineered model using human cells to test the effectiveness of anti-sarcoma medications. These preclinical experiments are designed to identify the most promising candidates for the treatment of soft-tissue sarcoma that ultimately will be pursued in human clinical trials. Early studies have identified several chemical compounds that, in cell cultures at least, appear to slow the growth of sarcoma cells.

In addition to Wagers and Hettmer, other Joslin co-authors of the study were Jianing Liu, Christine Miller, and Melissa Lindsay, as well as Cynthia Sparks and David Guertin of the University of Massachusetts Medical School, Roderick Bronson of the Tufts University School of Veterinary Medicine, and David Langenau of Massachusetts General Hospital.

About Joslin Diabetes Center

Joslin Diabetes Center is the world's preeminent diabetes research and clinical care organization. Joslin is dedicated to ensuring that people with diabetes live long, healthy lives and offers real hope and progress toward diabetes prevention and a cure. Joslin is an independent, nonprofit institution affiliated with Harvard Medical School. For more information about Joslin, visit www.joslin.org. Keep up with Joslin research and clinical news at Inside Joslin at www.joslin.org/news/inside_joslin.html, Become a fan of Joslin on Facebook at www.facebook.com/joslindiabetes and follow Joslin on Twitter at www.twitter.com/joslindiabetes

Jeffrey Bright | EurekAlert!
Further information:
http://www.joslin.org

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>