Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unlocking the genetic and molecular mystery of soft-tissue sarcoma

01.12.2011
Joslin study uncovers potential targets for treating disease

Scientists at Joslin Diabetes Center in Boston have uncovered important molecular and genetic keys to the development of soft-tissue sarcomas in skeletal muscle, giving researchers and clinicians additional targets to stop the growth of these often deadly tumors.

Published in the Proceedings of the National Academy of Sciences, the study identified two major molecular signaling pathways (the Ras and mTOR pathways) that are common in tumor growth and development. These molecular pathways regulate cell growth and division, two cellular properties whose over-activation are hallmarks of cancer biology.

"In humans, some sarcomas respond to chemotherapy," says lead author Amy J. Wagers, PhD, an associate professor of stem cell and regenerative biology at Harvard Medical School and Joslin Diabetes Center, "but many don't. With these findings, we have vetted a list of new candidate targets whose inhibition may lead to regression of these tumors. "

Many soft-tissue sarcomas, which develop in certain tissues such as bone and muscle, carry specific genetic mutations or unique gene signatures, which can allow scientists to develop more precise, targeted therapies. Wagers and her colleagues engineered a tumor system in mice by introducing into mouse skeletal muscle a cancer-carrying gene, or oncogene, known to cause tumors in humans. They used this engineered system to identify a small set of genes that are active in sarcoma tumors.

There are many different types of soft-tissue sarcomas, which develop in tissues that connect, support or surround other structures and organs, including muscle, tendons, nerves, fat and blood vessels. If diagnosed early, treatment, primarily through surgical removal of the tumor, radiation therapy or chemotherapy, can be effective. If the tumor has spread, however, the tumor can be controlled only for a period of time, but treatment does not often cure the disease.

By inducing these tumors in mice, Wagers says the scientists knew when the tumors would form in the mice and where in the body they would develop, which helped them better understand the molecular and genetic pathways underlying the disease. With this knowledge, researchers may be able to develop new intervention strategies that interfere with these genetic activities and stop the growth of this type of tumor.

"With the engineered system we developed, we can find new fragile points in the tumor to target," says first author Simone Hettmer, MD, a pediatric oncologist at the Dana-Farber/Children's Hospital Cancer Center, who treats children with these tumors. In addition, she adds, the system allows scientists to look at the genetic changes in sarcomas and how they interact with the development of tumors and can be applied to sarcomas in tissues other than skeletal muscle.

Surprisingly, says Wagers, the researchers found they could induce tumors using several different "beginning" cells. The scientists generated tumor cells using stem cell-like cells that go on to make either muscle or other connective tissues. Tumors that develop from muscle cells were rhabdomyosarcomas, the most common form of soft-tissue sarcoma seen in children, while tumors that developed from non-muscle cells represented other types of sarcoma.

Wagers and her colleagues are now working on establishing a similar engineered model using human cells to test the effectiveness of anti-sarcoma medications. These preclinical experiments are designed to identify the most promising candidates for the treatment of soft-tissue sarcoma that ultimately will be pursued in human clinical trials. Early studies have identified several chemical compounds that, in cell cultures at least, appear to slow the growth of sarcoma cells.

In addition to Wagers and Hettmer, other Joslin co-authors of the study were Jianing Liu, Christine Miller, and Melissa Lindsay, as well as Cynthia Sparks and David Guertin of the University of Massachusetts Medical School, Roderick Bronson of the Tufts University School of Veterinary Medicine, and David Langenau of Massachusetts General Hospital.

About Joslin Diabetes Center

Joslin Diabetes Center is the world's preeminent diabetes research and clinical care organization. Joslin is dedicated to ensuring that people with diabetes live long, healthy lives and offers real hope and progress toward diabetes prevention and a cure. Joslin is an independent, nonprofit institution affiliated with Harvard Medical School. For more information about Joslin, visit www.joslin.org. Keep up with Joslin research and clinical news at Inside Joslin at www.joslin.org/news/inside_joslin.html, Become a fan of Joslin on Facebook at www.facebook.com/joslindiabetes and follow Joslin on Twitter at www.twitter.com/joslindiabetes

Jeffrey Bright | EurekAlert!
Further information:
http://www.joslin.org

More articles from Life Sciences:

nachricht Stiffness matters
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Separate brain systems cooperate during learning, study finds
22.02.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>