Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unlike us, Honey bees can make ‘quick switch’ in their biological clocks without problems

13.10.2010
Unlike humans, honey bees, when thrown into highly time-altered new societal roles, are able to alter their biological rhythms with alacrity, enabling them to make a successful “quick switch” in their daily routines, according to research carried out at the Hebrew University of Jerusalem.

With people, on the other hand, disturbances to their biological clocks by drastic changes in their daily schedules are known to cause problems -- for example for shift workers and for new parents of crying, fitful babies.

Disturbance of the biological clock – the circadian rhythm – can also contribute to mood disorders. On a less severe scale, international air travelers all know of the “jet lag” disturbance to their biological clocks caused by traveling across several time zones.

Bees, however, have now been shown to be highly resilient to such change. When removed from their usual roles in the hive, the bees were seen to quickly and drastically change their biological rhythms, according to a study by Prof. Guy Bloch of the Department of Ecology, Evolution and Behavior of the Alexander Silberman Institute of Life Sciences at the Hebrew University. His research is published in the current edition of The Journal of Neu roscience.

The changes, he found, were evident in both the bees’ behavior and in the "clock genes" that drive their internal biological clocks. These findings indicate that social environment had a significant effect on the physiology of their behavior.

Circadian rhythm, the body’s “internal clock,” regulates daily functions. A few “clock genes” control many actions, including the time of sleeping, eating and drinking, temperature regulation and hormone fluctuations. However, exactly how that clock is affected by -- and affects -- social interactions with other animals is unknown.

Bloch and his colleagues Dr. Yair Shemesh, Ada Eban-Rothschild, and Mira Cohen chose to study bees in part because of their complex social environment. One role in bee society is the “nurse” -- bees that are busy round the clock caring for larvae. This activity pattern is different from other bees and animals, whose levels rise and fall throughout the day.

Bloch and his team thought that changing the nurse bees’ social environment might alter their activity levels, so they separated them from their larvae. The researchers found that the bees’ cellular rhythms and behavior completely changed, matching a more typical circadian cycle. The opposite also was true, when other bees were transferred into a nursing function.

“Our findings show that circadian rhythms of honey bees are altered by signals from the brood that are transferred by close or direct contact,” Bloch said. “This flexibility in the bees’ clock is striking, given that humans and most other animals studied cannot sustain long periods of around-the-clock activity without deterioration in performance and an increase in disease.”

Because bees and mammals’ circadian clocks are similarly organized, the question arises as to whether the clocks of other animals also strongly depend on their social environments. The next step is to find just how social exchanges influence gene expressions. Further research into this question may have implications for humans who suffer from disturbances in their behavioral, sleeping and waking cycles.

The research was supported by the Israeli Science Foundation, the Israel-U.S. Binational Science Foundation, and the German Israel Foundation.

For further information:

Jerry Barach, Dept. of Media Relations, the Hebrew University,
Tel: 02-588-2904.
Orit Sulitzeanu, Hebrew University spokesperson, Tel: 054-8820016

Jerry Barach | Hebrew University of Jerusalem
Further information:
http://www.huji.ac.il

Further reports about: Science TV biological clock social interaction

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>