Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unlike us, Honey bees can make ‘quick switch’ in their biological clocks without problems

13.10.2010
Unlike humans, honey bees, when thrown into highly time-altered new societal roles, are able to alter their biological rhythms with alacrity, enabling them to make a successful “quick switch” in their daily routines, according to research carried out at the Hebrew University of Jerusalem.

With people, on the other hand, disturbances to their biological clocks by drastic changes in their daily schedules are known to cause problems -- for example for shift workers and for new parents of crying, fitful babies.

Disturbance of the biological clock – the circadian rhythm – can also contribute to mood disorders. On a less severe scale, international air travelers all know of the “jet lag” disturbance to their biological clocks caused by traveling across several time zones.

Bees, however, have now been shown to be highly resilient to such change. When removed from their usual roles in the hive, the bees were seen to quickly and drastically change their biological rhythms, according to a study by Prof. Guy Bloch of the Department of Ecology, Evolution and Behavior of the Alexander Silberman Institute of Life Sciences at the Hebrew University. His research is published in the current edition of The Journal of Neu roscience.

The changes, he found, were evident in both the bees’ behavior and in the "clock genes" that drive their internal biological clocks. These findings indicate that social environment had a significant effect on the physiology of their behavior.

Circadian rhythm, the body’s “internal clock,” regulates daily functions. A few “clock genes” control many actions, including the time of sleeping, eating and drinking, temperature regulation and hormone fluctuations. However, exactly how that clock is affected by -- and affects -- social interactions with other animals is unknown.

Bloch and his colleagues Dr. Yair Shemesh, Ada Eban-Rothschild, and Mira Cohen chose to study bees in part because of their complex social environment. One role in bee society is the “nurse” -- bees that are busy round the clock caring for larvae. This activity pattern is different from other bees and animals, whose levels rise and fall throughout the day.

Bloch and his team thought that changing the nurse bees’ social environment might alter their activity levels, so they separated them from their larvae. The researchers found that the bees’ cellular rhythms and behavior completely changed, matching a more typical circadian cycle. The opposite also was true, when other bees were transferred into a nursing function.

“Our findings show that circadian rhythms of honey bees are altered by signals from the brood that are transferred by close or direct contact,” Bloch said. “This flexibility in the bees’ clock is striking, given that humans and most other animals studied cannot sustain long periods of around-the-clock activity without deterioration in performance and an increase in disease.”

Because bees and mammals’ circadian clocks are similarly organized, the question arises as to whether the clocks of other animals also strongly depend on their social environments. The next step is to find just how social exchanges influence gene expressions. Further research into this question may have implications for humans who suffer from disturbances in their behavioral, sleeping and waking cycles.

The research was supported by the Israeli Science Foundation, the Israel-U.S. Binational Science Foundation, and the German Israel Foundation.

For further information:

Jerry Barach, Dept. of Media Relations, the Hebrew University,
Tel: 02-588-2904.
Orit Sulitzeanu, Hebrew University spokesperson, Tel: 054-8820016

Jerry Barach | Hebrew University of Jerusalem
Further information:
http://www.huji.ac.il

Further reports about: Science TV biological clock social interaction

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>